
Eye Movements in Programming:

Spring Academy 2017

Sascha Tamm, Roman Bednarik, Teresa Busjahn,

Carsten Schulte, Hana Vrzakova, Lea Budde (Eds.)

TR-B-17-02
May 2017

2

3

4

EyeCode

https://github.com/synesthesiam/eyecode/

p

p
p

Eyecode

, et al.
ICPC

5

The effect of syntax highlighting on source code
reading

Tanya Beelders
Department of Computer Science and

Informatics
University of the Free State
Bloemfontein, South Africa

(+27)51 401 9320
beelderstr@ufs.ac.za

Jean-Pierre du Plessis
Department of Computer Science and

Informatics
University of the Free State
Bloemfontein, South Africa

(+27)51 401 3701
DuPlessisJL@ufs.ac.za

The main aim of this study is to determine whether
inexpensive black-and-white ereaders are a viable
alternative for information technology (IT) textbooks. The
IT students at the university where the study was
conducted programme in Visual Studio®, which
automatically provides them with syntax highlighting.
However, currently it is not uncommon for textbooks to
be provided in black-and-white format which is different
to what they are used to seeing in the integrated
development environment. The question then arises as to
whether this is a disadvantage to students while studying.
The prevalence of online resources which could replace
hard-copy textbooks could be a better solution.
Additionally, textbooks are traditionally expensive, more
so than the electronic equivalent, hence it might be
financially prudent to use electronic resources. Hence,
tablets and ereaders could be used as a medium to deliver
academic texts. The question now is whether a cheaper
black-and-white electronic device will suffice or whether
there is a need for a more expensive device capable of
rendering colour.

Therefore the initial phase of the study investigated
whether there was any difference in reading behaviour of
students who read a piece of source code with or without
syntax highlighting ([1]; [2]). Findings suggest that while
the code with syntax highlighting is more aesthetically
pleasing, it does not make the code easier to read ([1]).
Participants reading code without syntax highlighting did
however enter a more concentrated reading phase faster
than their counterparts who received the code with syntax

highlighting ([2]) but once again they did not experience
significantly more difficulty reading the code ([2]).

Since syntax highlighting does not appear to affect the
reading behaviour of students, it appears to be immaterial
(from an objective standpoint) whether the code presented
uses syntax highlighting or not.

The current phase of the study is investigating whether the
device used has an effect on code reading. Factors such as
page breaks, rotation, quality of display could influence
the reading behaviour. Therefore, data is currently being
collected on a number of devices in order to determine
whether the device itself plays a role. This will answer the
initial question as to whether resources could be provided
on an electronic device and of what stature the device
should be.

References

[1] Beelders, T.R. and du Plessis, J-P. (2016a). Syntax
highlighting as an influencing factor when reading and
comprehending source code. Journal of Eye
Movement Research, 9(1), 1-11.

[2] Beelders, T.R. and du Plessis, J-P. (2016b). The
influence of syntax highlighting on scanning and
reading behaviour for source code. In Proceedings of
SAICSIT 2016, Johannesburg, South Africa.

6

Scanpath comparison with the use of web applications
SMI2OGAMA and ScanGraph

Extended Abstract

S. Popelka
Palacký University Olomouc

17. Listopadu 50, 77146, Olomouc
Czech Republic

stanislav.popelka@upol.cz

J. Dolezalova
Palacký University Olomouc

17. Listopadu 50, 77146, Olomouc
Czech Republic

jitka.dolezalova@upol.cz

ABSTRACT
The contribution will introduce two web tools for analysis of eye-
tracking data. The first one – SMI2OGAMA is a simple tool for
conversion of data recorded with SMI software. Outputs of this tool
can be directly imported into OGAMA – open-source application
for analysis of eye-tracking data. OGAMA allows creating a
sequence of visited Areas of Interest. This file can be used directly
in our second tool called ScanGraph. ScanGraph allows finding
participants with a similar strategy of stimuli inspection. The
application performs a scanpath comparison based on the String
Edit Distance method, and its output is a simple graph. Groups of
similar sequences/participants are displayed as cliques of this graph.

KEYWORDS
Eye-tracking, Conversion, Scanpath comparison, Web application

1 INTRODUCTION
The beginnings of interest in distinctive scanning patterns can be
found in the study of Noton and Stark [8], who reported a qualitative
similarity in eye-movements when people viewed line drawings on
multiple occasions. The scanpath comprises sequences of alternating
saccades and fixations that repeat themselves when a respondent is
viewing stimuli. One of the most frequently used methods is String
Edit Distance, which is used to measure the dissimilarity of character
strings. As Duchowski et al. [5] mentions, scanpath comparison
based on the String Edit Distance introduced by Privitera and Stark
[9] was one of the first methods to quantitatively compare not only
the loci of fixations but also their order.

When using String Edit Distance, the grid or Areas of Interest (AOI)
have to be marked in the stimulus. The gaze trajectory (scanpath) is
then replaced by a character string representing the sequence of
fixations with characters for AOIs they hit. A sequence of
transformations (insertions, deletions, and substitutions) is used to
transform one string to another. Their similarity is represented as the
number of transformation steps between two analyzed strings [1].

Open Gaze and Mouse Analyzer (OGAMA) [10] allows to create
and export this character string directly as a part of the scanpaths
module. The user only needs to draw Areas of Interest or generate
a grid and OGAMA displays the character strings and calculates
Levenshtein distances between them. This calculation does not take
into account the different lengths of strings, so only the strings are
used in our tool called ScanGraph. So our tool disregards this
calculation and uses just the string for its own calculations.
Although OGAMA allows also a recording of the data, in the
majority of cases we are using SMI device and software for creation
of experiments and recording of the data. Recorded raw data can be
converted into OGAMA import format and analyzed here. To do
this conversion, we have developed a simple tool called
SMI2OGAMA.

2 SMI2OGAMA
SMI2OGAMA is a web application developed in PHP and is
available at http://eyetracking.upol.cz/smi2ogama/. Its use is very
simple. User exports gaze positions as raw data from SMI BeGaze
as single files for each participant. The zip file with these raw data
is uploaded into SMI2OGAMA and the conversion to OGAMA
format runs on the server. After a couple of seconds, the zip file
with converted files is downloaded. In the next phase, user imports
these files into new OGAMA project (one by one, because
timestamps are not unique). Finally, stimuli images are copied into
SlideResources folder of OGAMA. The interface of
SMI2OGAMA contains more information about this process
including illustration figures (Fig 1).

Figure 1: Interface of SMI2OGAMA web application

7

3 SCANGRAPH
ScanGraph (http://eyetracking.upol.cz/scangraph/) uses visualization
of cliques in simple graphs (Fig 2). It displays the simple graph with
cliques. These cliques show similar sequences based on the input
parameter of the degree of similarity. ScanGraph was developed in
PHP and C# (Backend) and D3.js (Frontend).

The calculation of similar groups could be described in several steps.
At first, the distance matrix is constructed using Levenshtein distance
[6], Needleman-Wunsch algorithm [7] or Damerau-Levenshtein
distance [3]. However, it is not appropriate to use the absolute value
of the distance to comparing the similarities. Hence, the values are
normalized. Each of the element of the matrix is divided by the
higher value of the length of strings and . The next step is creation
of the adjacency matrix, which depends on the user’s choice of
“advised graph”, parameter p or percent of possible edges.

“Advised Graph” is a graph with 5 % of possible edges and the
corresponding value of parameter The second option is
a construction of user-defined graph according to parameter or %
of edges. The higher value of , the higher similarity of
the given sequences.

The output of the ScanGraph is a simple graph and listed cliques of
this graph (right part of the fig. 2). After clicking on the list, selected
clique (a group of similar participants) is highlighted and their
character strings are displayed at the bottom. In the case of fig. 2, the
parameter was set to 0.6, so groups of participants whose sequences
of visited AOIs were similar to at least 60% are displayed. Biggest
clique contains three participants. All three of them were
Noncartographers (which is indicated by their color).

Figure 2: Interface of ScanGraph web application

Detailed information about its principles and possibilities was
described in [4]. Since the publication of this article, several updates
were performed. Damerau-Levenshtein distance that takes into
account the transpositions of adjacent characters. A heuristic
algorithm for clique finding is not needed anymore. Cliques are now
found with the use of Bron-Kerbosch algorithm [2]. In the first
version of ScanGraph, only analysis of one stimulus was possible.
Now, the tool allows to read zip files with character strings for

multiple stimuli and calculates the similarity of the participants
across them.

4 CONCLUSIONS
Two web applications are briefly described in this contribution. The
first one – SMI2OGAMA allows to convert data recorded by SMI
software into the environment of OGAMA. In OGAMA, character
strings representing the sequences of visited Areas of Interest can be
generated. These sequences are used as an input into the second
described application – ScanGraph. ScanGraph allows calculating
similarities of these sequences (and hence of the participant's
trajectories) using three algorithms. Results are displayed as cliques
of a simple graph.

ACKNOWLEDGMENTS
The preparation of this publication has been supported by the Internal
Grant Agency of the Palacký University in Olomouc (project
IGA_PrF_2016_008, Advanced monitoring, spatial analysis and
visualization of urban landscape).

REFERENCES
[1] Anderson, N. C., Anderson, F., Kingstone, A., Bischof, W.

F. (2014) A comparison of scanpath comparison methods.
Behavior research methods, pp. 1-16.

[2] Bron, C., Kerbosch, J. (1973) Algorithm 457: finding all
cliques of an undirected graph. Communications of the
ACM, 16(9), pp. 575-577.

[3] Damerau, F. J. (1964) A technique for computer detection
and correction of spelling errors. Communications of the
ACM, 7(3), pp. 171-176.

[4] Dolezalova, J., Popelka, S. (2016) ScanGraph: A Novel
Scanpath Comparison Method Using Visualisation of
Graph Cliques. Journal of Eye Movement Research, 9(4),
pp. 1-13.

[5] Duchowski, A. T., Driver, J., Jolaoso, S., Tan, W., Ramey,
B. N., Robbins, A.(2010) Scanpath comparison revisited.
In Proceedings of Symposium on Eye-Tracking Research
& Applications, ACM, 2010, pp. 219-226.

[6] Levenshtein, V. I. (1966) Binary codes capable of
correcting deletions, insertions, and reversals. Soviet
physics doklady, 10(8), pp. 707-710.

[7] Needleman, S. B., Wunsch, C. D. (1970) A general method
applicable to the search for similarities in the amino acid
sequence of two proteins. Journal of molecular biology,
48(3), pp. 443-453.

[8] Noton, D., Stark, L. (1971) Scanpaths in saccadic eye
movements while viewing and recognizing patterns. Vision
Research, 9//, 11(9), pp. 929-942.

[9] Privitera, C. M., Stark, L. W. (2000) Algorithms for
defining visual regions-of-interest: Comparison with eye
fixations. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 22(9), pp. 970-982.

[10] Voßkühler, A., Nordmeier, V., Kuchinke, L., Jacobs, A. M.
(2008) OGAMA (Open Gaze and Mouse Analyzer): open-
source software designed to analyze eye and mouse
movements in slideshow study designs. Behavior research
methods, 40(4), pp. 1150-1162.

8

Evaluating the Readability of Example Programs for
Novice Programmers

James H Paterson
Glasgow Caledonian University

Cowcaddens Road
Glasgow G4 0BA, UK

James.Paterson@gcu.ac.uk

ABSTRACT
This paper describes a proposed study of readability of code
examples designed to support learning programming. The study
focuses on measuring readability for comprehension. It considers
only code structure rather than presentation and relates perceived
readability and comprehension to a simple reading ease score and
to eye movements during code reading. Characteristics of the
example programs to be used in the study are described. Insights
are sought into the value of metrics and eye movements in
evaluating readability.

Categories and Subject Descriptors
K.3.4 [Computer and Information Science Education]:
Computer science education, information systems education

General Terms
Experimentation, Human Factors.

Keywords
Computing education, code reading, eye tracking

1. INTRODUCTION
Examples are valuable tools in teaching programming. Example
programs work as role models and must therefore
be consistent with the principles and rules we are teaching.
Börstler et al [3] noted that it is often difficult to find or
develop examples that are both well aligned with pedagogical
principles and practices and that correctly illustrate the principles
and guidelines of the object-oriented paradigm. Example
programs should also be understandable by learners with the level
of expertise for whom they are designed. An important aspect of
understandability is readability. If code has a high level of
readability then it is easy for the reader to recognize syntactical
elements which leads to the ability establish relationships between
those elements and build a mental model of the operation of the
code.
Readability of text depends on its content and its presentation, and
this is true for code as it is for natural language text. Presentation
aspects, such as type size and font, influence readability at the
level of legibility. Hargis [10] describes this as the surface level of
readability, and described readability for comprehensibility as
being at a higher level, influenced more by aspects such as
sentence structure and length, and vocabulary.
Börstler et al [4] proposed a simple metric, Software Readability
Ease Score (SRES), to measure code readability, analogous to the
Flesch reading ease score [8] which is widely used for natural
language text. This metric focuses on readability for
comprehensibility. They present two versions of an example
program (“beauty” and “the beast”) which differ largely in overall

structure while providing the same functionality – “beauty” is
composed from simple functional components, “beast” essentially
has a single monolithic component. The SRES score for each is
computed and compared to a range of other metrics. SRES
contrasts in its simplicity and focus on features analogous to those
of natural text with other software readability metrics that have
been proposed (see section 2). However, it correlates well with the
quality of object-oriented example programs as perceived by
human experts and is proposed as a useful tool for helping
educators in the selection and development of suitable example
programs.
This paper proposes a study of readability of code examples
typical of those presented to novices in introductory programming
courses, focusing on comprehensibility. Following the philosophy
of SRES, surface level presentation will not be the focus of the
study, as these are essentially independent of the code itself and
can be easily changed if the code is read in a code editor.
Arguably, indentation and spacing are also at surface level of
readability, and can typically be amended automatically in code
editors without changing the code itself (unless they are
syntactically significant in the programming language).
Comments will also not be considered here. Interestingly, Börstler
and Paech [5] studied the influence of comments and found that
these influence perceived readability but not comprehension.
Finally, differences in readability between different programming
languages is not within the scope of this proposal, which is limited
to Java, a language that is widely used in introductory courses[3].
Readability studies typically record perceived readability as
informed by the participants and comprehension, as measured by
the performance on comprehension tasks. Eye movement data will
add a further dimension to this study, allowing observation of, for
example, total time spent on a reading task, time spent on specific
features of the code, and patterns and strategies evidenced in the
gaze data, which can be analysed according the coding scheme
developed during a previous EMIP workshop [2].
Possible research questions are:
• Does a readability ease score analogous to a natural language

reading ease score predict the readability of code examples
used in teaching novice programmers?

• Can differences in reading strategy of functionally equivalent
code examples be observed in eye movements provide
evidence of reading ease?

• What features of such code examples influence readability?

2. OTHER READABILITY MEASURES
Buse and Weimer [6] implemented a tool that assesses readability
of programs with a model constructed using machine learning
techniques based on ratings of readability of code snippets made
by 120 human participants.
Posnett et al. [12] propose a somewhat simpler model that
calculates readability from code metrics (Halstead’s volume, lines

9

and Entropy). They assert that this model actually outperforms the
BW model.
CLOZE tests, in which humans are asked to fill in missing
elements from text with every nth word obscured, have also been
long used to measure text readability. Such tests have been
proposed in relation to program code as a technique for assessing
comprehension [9], although not specifically for measuring code
readability.
Dorn [7] introduced a “generalizable” model, which includes
visual, spatial, alignment, and linguistic features, and includes
aspects such as syntax highlighting, variable naming and
structural. Building on that work, Scalabrino et al. [13] present a
set of textual features based on source code lexicon analysis and
assert that textual features complement structural ones to improve
the accuracy of code readability models.

3. CHARACTERISTICS OF EXAMPLES
Examples for novice programmers may be designed to illustrate a
specific syntax feature, or a programming technique which makes
use of a feature. Listing 1 shows an example method used to
illustrate the implementation of an algorithm using an if-else
statement in Java. The preamble to the example would be a
discussion of the rules which apply to the problem domain
(calculating an energy bill) and how these might be expressed as
an algorithm. The learner would be expected to understand from
this example the way in which the code has implemented the
algorithm and the role of the if-else statement in this.

Listing 1. Version 1 of a method that implements a simple
algorithm using an if-else statement and returns the value
calculated using the algorithm

This example could equally well be written as in Listing 2, which
is functionally equivalent. In this version named constants are
used to replace numbers, and there are variables holding
intermediate values during the calculations. The latter change has
the effect of dividing evaluation of the expressions into evaluating
a larger number of simpler expressions and combining the results.
There are, of course, other variations possible adopting specific
aspects of the approach shown either of the two listings, and a
range of versions will be studied.

Listing 2. Alternative version of the method shown in Listing 1.

So which, if either, is the “beauty” and which is the “beast”?
SRES, like the Flesch score, is based on two metrics – Average
Word Length (AWL) and Average Sentence Length (ASL). The
interpretation of these has been adapted for code, so that AWL is
influenced by lexeme length (for example identifiers, key words),
while ASL corresponds to the number of words per statement.
The weighting given to AWL is very low in SRES, in contrast to
natural reading scores. This seems reasonable as long identifiers
don’t generally carry the same implication of complexity as long
words in natural language, and in fact can carry information to aid
readability compared to very short identifiers. Hofmeister et al.
[11] focused specifically on identifier length and semantics and
showed that identifier names using proper words lead to a faster
comprehension, evidenced through defect detection, than
identifier names using abbreviated words or single letters. For this
reason, SRES might favour Listing 2. However, the short
definition given by Boerstler et al. for ASL also refers to number
of words per block, which would presumably favour Listing 1.
Note that these are observations based on the general philosophy
of the metric – the specific strategy used to calculate SRES for the
example programs will be based on the detailed description given
by Abbas [1].
A set of examples has been developed, drawn from course
materials used in an introductory Java programming module. In
each case, functionally equivalent versions have been prepared
which differ in the structure of the code. The examples do not
differ in variable names or method names, except where
additional variables or methods are required to accommodate
difference in structure. Other presentational aspects, including
indentation, line spacing, spacing around operators, positioning of
opening braces, and syntax highlighting will be consistent in all
examples and the way they are displayed to the participants.
Equivalent examples do differ in aspects of structure. These relate
closely to code features that are likely to affect comprehensibility,
and which Sedano found to be the most significant, other than
identifier names, in a study of perceived code readability [14]:
• Structure of and conditions in control flow statements
• Decomposition by extracting methods, similar to Börstler’s

“beauty and the beast”

4. CONCLUSION
Readability is an important aspect of code examples developed to
support the learning novice programmers. Instructors could
benefit significantly from having the means to evaluate, in a
simple way, the readability of their example programs, or from
having guidelines based on evidence of what aspects of simple
code most strongly in similar examples. The study proposed here
will evaluate the usefulness of a simple reading ease metric for
predicting readability. Eye-tracking and gaze data may have a
valuable role to play in providing insights into the process of
reading code examples where the same functionality is expressed
with different structures and syntax. There are, of course,
significant challenges in determining cognitive processes in code
reading from gaze data, and it is hoped that valuable insights will
be gained through the focus on readability.

10

5. REFERENCES
[1] Abbas, N., 2010, January. Properties of “good” java

examples. Masters thesis, Umeå University, Umeå, Sweden.
[2] Bednarik, R., Busjahn, T., and Schulte, C. 2014. Eye

movements in programming education: Analyzing the
expert’s gaze. Technical report, University of Eastern
Finland, Joensuu, Finland.

[3] Börstler, J.,Nordström, M. and Paterson, J.H. 2011. On the
Quality of Examples in Introductory Java Textbooks. Trans.
Comput. Educ. 11, 1, Article 3.

[4] Börstler, J., Caspersen, M. E., & Nordström, M. 2015.
Beauty and the Beast: on the readability of object-oriented
example programs. Software Quality Journal, 1-16.

[5] Börstler, J. and Paech, B., 2016. The Role of Method Chains
and Comments in Software Readability and
Comprehension—An Experiment. IEEE Transactions on
Software Engineering, 42(9), pp.886-898.

[6] Buse, R. P., & Weimer, W. R. 2010. Learning a metric for
code readability.Software Engineering, IEEE Transactions
on, 36(4), 546-558.

[7] Dorn, J., 2012. A general software readability model. MCS
Thesis available from (http://www. cs. virginia. edu/~
weimer/students/dorn-mcs-paper. pdf).

[8] Flesch, R., 1948. A new readability yardstick. Journal of
Applied Psychology, 32(3), p.221.

[9] Garner, S. 2005. The CLOZE procedure and the learning of
programming. Proceedings of International Conference on
Learning, Granada, Spain, 5-13.

[10] Hargis, G. 2000. Readability and computer
documentation. ACM Journal of Computer Documentation
(JCD), 24(3), 122-131.

[11] Hofmeister, J.C., Siegmund, J. and Holt, D.V., 2015.
Influence of identifier length and semantics on the
comprehensibility of source code. Department of
Psychology, University of Heidelberg, Germany.

[12] Posnett, D., Hindle, A., & Devanbu, P. 2011. A simpler
model of software readability. In Proceedings of the 8th
working conference on mining software repositories (pp. 73-
82). ACM.

[13] Scalabrino, S., Linares-Vásquez, M., Poshyvanyk, D. and
Oliveto, R., 2016, May. Improving code readability models
with textual features. In Program Comprehension (ICPC),
2016 IEEE 24th International Conference on (pp. 1-10).
IEEE.

[14] Sedano, T., 2016, April. Code Readability Testing, an
Empirical Study. In Software Engineering Education and
Training (CSEET), 2016 IEEE 29th International Conference
on (pp. 111-117). IEEE.
.

11

Ambient and Focal Attention During Source-code
Comprehension

Position paper

Pavel A. Orlov
Peter the Great St. Petersburg Polytechnic University

Department of Engineering Graphics and Design
195251, Polytechnicheskaya,

St.Petersburg, Russia
paul.a.orlov@gmail.com

ABSTRACT
This preliminary analysis of ambient and focal attention dur-
ing source-code comprehension uses the methodology of Kre-
jtz et al. [2]. I applied the original formula to the source-code
reading tests and found that subjects who program less than
one hour per month use ambient-like vision. At the same
time, focal vision usage dominates in subjects who do no
programming at all. Level of English proficiency and gender
play important roles: subjects with a high English level use
ambient vision; subjects with a low English level in perform
focal vision mode. Females use ambient-like vision more
than males. Finally, I open the discuss about the role of
ambient/focal attention during source-code comprehension.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
J.4 [Social and behavioral sciences]: Psychology; D.2.8
[Software Engineering]: Metrics—complexity measures,
performance measures

Keywords
Eye movements, eye-tracking, ambient vision, focal vision,
source code comprehension

1. INTRODUCTION
Analysis of eye movements during source-code compre-

hension allows researchers the opportunity to evaluate vi-
sual attention. Following the idea that gaze position goes
through the attentional visual object, the place of gaze fixa-
tion, fixation durations, and scanning pattern are frequently
used metrics for analysis. However, the question remains as
to why the programmer turns their attention to the next
source-code element – that is, why do they select it? Was
this selection determined by the source-code structure and
“bottom-up” attentional process, or was it a volitional act
that corresponds to “top-down” approach?
There are two modes of acquiring information during per-

ception of visual stimuli: exploration and inspection [9, 5].
The scene exploration process is employed when a subject
looks for a target in the visual scene and makes short fixa-
tions and long saccades to find it. After the ambient phase,
when a potential target has been found, the subject inspects
it and determines whether it is a target. This second stage–

focal vision–corresponds with long fixations and short sac-
cades’ amplitude [10, 8].
The target inspection is a volitional act of the subject;

hence, the focal vision corresponds with the “top-down” vi-
sual attention process and may be interpreted by the di-
rect control theories of visual attention [9, 4]. Ambient vi-
sion is less costly and dominates in parallel search, while
focal attention is required for serial search in visual search-
ing tasks [3, 2]. The domination in parallel search can be
explained by the “bottom-up” attentional process, when a
pop-out effect provides faster target localization [7].
The evaluation of the ambient and focal modes of vision

may provide insight into source-code comprehension. How-
ever, I did not find such studies in the psychology of pro-
gramming field.

2. AMBIENT AND FOCAL ATTENTION
EVALUATION

I am following the methodology of Krejtz et al. to identify
ambient and focal attention from eye movement data [2].
The authors presented the Coefficient K as the difference
between zero-score values of the fixation durations and sac-
cadic amplitudes (see Formula 1). The positive and negative
values of the Coefficient K indicate focal or ambient viewing,
respectively.

Ki =
di − μd

σd
− ai+1 − μa

σa
, such that K =

1

n

∑

n

Ki (1)

Ki was calculated for each fixation with duration di and
saccadic amplitude ai+1 that goes after the ith fixation –
where μd, μa are the mean fixation duration and saccade
amplitude, respectively, and σd, σa are the fixation duration
and saccade amplitude standard deviations, respectively, com-
puted over all n fixations [2]. Mean fixation durations and
saccade amplitudes were calculated for all subjects and for
all stimuli.

3. RESULTS AND DISCUSSION
The analysis was conducted on the open eye-tracking data

by the EMiPWS group (in publishing). Data from 209 sub-
jects were reviewed. Fixations, saccades, and blinks were de-
tected by the algorithm described by Engbert and Kliegl [1]
in the saccade package (the package is available at

12

https://github.com/tmalsburg/saccades) for R programming
language [6]. I’ve included Java programmers only and ex-
cluded data from 5 participants because of an anomaly in
fixation duration detection.
A two-way ANOVA of the mean Coefficient K revealed

that the frequency of programming has a statistically sig-
nificant effect (F(4, 386) = 5.838, p < .001). The effect
of the frequency of Java programming was also significant
(F(4, 386) = 2.644, p = .033). Not surprisingly, I also found
a significant interaction between the frequency of program-
ming and the frequency of Java programming (F(16, 386) =
1.768, p = .034).

Figure 1: Means of K Coefficient by frequency of
programming.

Figure 2: Means of K Coefficient by frequency of
programming in Java.

Figure 1 and Figure 2 show that the difference in the
means of the Coefficient K is small. However, the figures
show a trend in which the K Coefficient increases as pro-
gramming frequency increases. Unexpectedly, I found that
when subjects do not program at all, their Coefficient K is
quite high while subjects who program less than one hour
per month have Coefficients K of less than zero. Subjects
who do not program at all still solve tasks correctly and
use mostly focal vision, which is similar for subjects who
program more than one hour a day. These two groups prob-
ably use the direct control of visual attention for different
purposes.
A more ambient-like mode of vision was used by sub-

jects who are proficient in the English language (a one-way
ANOVA: F(2, 408) = 14.62, p < .001). Figure 3 shows that
subjects with a high English level have a K Coefficient of
about zero, while subjects with a low English level have a
higher K Coefficient. This result may be explained by that

fact that the stimulus was formed using a mix of Java pro-
gramming language and English. Subjects with have higher
English levels obtain the semantic information easily.

Figure 3: Means of K Coefficient by English level.

Finally, it was found that programmer’s gender plays an
interesting role against the ambient-focal vision modes. Gen-
der had a significant effect (a one-way ANOVA: F(1, 409)
= 15.8, p < .001) on the K Coefficient. Female subjects
perform using ambient vision more than focal vision during
source-code comprehension. Conversely, male programmers
use focal vision rather than ambient vision (see Figure 4).

Figure 4: Means of K Coefficient by gender.

This preliminary analysis of the ambient-focal attention
opens a discussion of their role in source-code comprehen-
sion. Specifically, should we apply Formula 1 for such tasks
as source-code reading? How can the knowledge of ambient-
focal usage be applied to software development issues for
educational purposes?

4. REFERENCES

13

[1] R. Engbert and R. Kliegl. Microsaccades uncover the
orientation of covert attention. Vision Research,
43(9):1035–1045, 2003.

[2] K. Krejtz, A. T. Duchowski, I. Krejtz, A. Szarkowska,
and A. Kopacz. Discerning Ambient / Focal Attention
with Coefficient K. ACM Transactions on Applied
Perception, 13(3):20, 2016.

[3] H.-C. Nothdurft. Focal attention in visual search.
Vision Research, 39(14):2305–2310, 1999.

[4] S. Pannasch, J. R. Helmert, R. M{\”u}ller, and B. M.
Velichkovsky. The analysis of eye movements in the
context of cognitive technical systems: three critical
issues. In Cognitive Behavioural Systems, pages 19–34.
Springer, esposito a edition, 2011.

[5] S. Pannasch, J. R. Helmert, K. Roth, and H. Walter.
Visual fixation durations and saccade amplitudes :
Shifting relationship in a variety of conditions. Journal
of Eye Movement Research, 2(2):1–19, 2008.

[6] R. C. Team. R: A language and environment for

statistical computing. R Foundation for Statistical
Computing, Vienna, Austria. 2013, 2014.

[7] A. M. Treisman and G. Gelade. A feature-integration
theory of attention. Cognitive Psychology,
12(1):97–136, 1980.

[8] P. J. a. Unema, S. Pannasch, M. Joos, and B. M.
Velichkovsky. Time course of information processing
during scene perception: The relationship between
saccade amplitude and fixation duration. Visual
Cognition, 12(3):473–494, 2005.

[9] B. M. Velichkovsky. Cognitive Science: Foundations of
epistemic psychology. [Kognitivnaya nauka : Osnovy
psihologii poznaniya], volume 2. Smusl: Publisher
center ”Akademia”, Moscow, 2006.

[10] B. M. Velichkovsky, S. M. Domhoefer, S. Pannasch,
and P. J. A. Unema. Visual Fixations and Level of
Attentional Processing. In ETRA ’00 Proceedings of
the 2000 symposium on Eye tracking research \&

applications, pages 79–85, 2000.

14

Towards robust data from program comprehension studies
with fine-grained interaction monitoring and eye tracking

Martin Konopka, Jakub Hucko, Jozef Tvarozek, Pavol Navrat
Slovak University of Technology in Bratislava, Faculty of Informatics and Information Technologies

Ilkovičova 2, 842 16 Bratislava, Slovakia
{martin_konopka, xhuckoj, jozef.tvarozek, pavol.navrat}@stuba.sk

ABSTRACT
In this paper, we describe a subset of interaction events to
monitor in a code editor together with raw gaze data and in-
formation about the eye tracker device used in the program
comprehension study in order to completely reconstruct pro-
grammers’ activity with source code for any time of the
recording session afterwards. The motivation behind record-
ing as much as possible, but still in the feasible amount, is to
avoid any bias that online preprocessing methods can bring
to the data, to allow reevaluation of methods used in the
data analysis, as well as to share the data with other re-
searchers for possible replication studies or replay program-
mers’ work with source code without screencast recording,
as we show with our implementation of such player.

Keywords
Program comprehension, Interaction monitoring, Eye track-
ing, Replication

1. INTRODUCTION
Various tools for recording data can be used in program

comprehension studies with eye tracking, mostly based on
the goals of the study and size of the source code fragments
used in the study. Ranging from analytics software sup-
plied by the eye tracker vendors with no specific support for
source code as a stimulus [1], e.g., Tobii Pro Studio, to di-
rect integration with a development enviroment, e.g., with
the notable iTrace plugin for the Eclipse IDE [4]. Integra-
tion of eye tracking with a code editor allows us to conduct
studies closer to the real-world workflow of programmers.
Together with another Eclipse plugin Mylyn we may also
record how programmers interacted with code and employ
that in the study [3].
For our purposes of program comprehension studies [5],

we opt to use lightweight code editor, e.g., Microsoft Visual
Studio Code or Monaco Editor1 integrated in a website, and
record gaze data with an external tool using the Tobii Ana-
lytics SDK. Our approach is to record raw gaze data and all
the necessary fine-grained interactions of a programmer with
source code in the editor and with the editor itself during
the experiment to allow us:

• completely reconstruct the state of the code editor at
any time of the recording afterwards,

• reevaluate raw gaze processing methods, e.g., fixation
filters, gaze alignments, smoothing filters,

1https://microsoft.github.io/monaco-editor/

• reevaluate code analysis methods at any time of the
recording, e.g., the generatation of abstract syntax tree
of the source code document,

• reevaluate gaze-to-code mapping algorithms, e.g., map-
ping of gaze positions to the nearest AST element,

• replay the programmer’s gaze and interactions.

2. REQUIRED DATA FOR REPLICATION
To meet our requirements for data collection, we record

and store solely raw data provided by the eye tracker to-
gether with all state changes and programmers’ interaction
events in the code editor. No online data pre-processing
(such as online fixation filtering) is performed during the
recording to avoid any introduction of bias into the data.
This should be performed only afterwards as part of the
data analysis task.

Each raw gaze data sample contains positions of program-
mer’s gaze on the screen, eyes in space and validity of the
recording. We also store information about the eye tracker
device itself, firmware version, track box coordinates, cali-
bration used for recording, and basic information about the
participating programmer.

To preserve the state and contents of the code editor over
time, we have identified the following subset of fine-grained
interaction events:

• Screen resolution and DPI settings,

• Code editor window:

– Size and position on the screen in pixels,

– Window focus and state changes,

– List of code editor viewports open in the window.

• Code editor viewport – includes source code document
contents and line numbers, scrollbars, etc.:

– ID of the viewport,

– Path to currently open source code document,

– Size and position in the window,

– Scrollbar visibility and size,

– Focus changes.

• Code editor contents – the area containing source code:

– Size and position in the viewport,

– Vertical and horizontal scroll position,

15

Figure 1: The MultiEye player displaying the recording of the program comprehension study with options
to annotate identified pattern in the gazeplot.

– Font settings – font family, size, line height, typ-
ical character width,

– Text cursor position and selections.

• Code editor contents changes

– Source code changes, if reported by the editor,

– Keyboard events.

Recording the described data allows us to reconstruct
position of the code editor viewport on the screen, verify
whether the programmer’s gaze was within its boundaries
at any particular time and what code element he or she was
focusing on. Even if the programmer may have edited the
program source code, using these events we may replicate
the changes, perform code analysis, and partially automate
the task of coding the gaze with the coding scheme [1].

3. REPLAY AND DATA ANALYSIS
Recording all the relevant events in the code editor allows

us to reconstruct and replay the programming session. Such
player of program comprehension studies may be used for
visualizing data analysis results, e.g., gaze plot or heatmap
evolving over time with source code changes, switching at-
tention between multiple source code documents.
Inspired by the Tobii Pro Studio software for analyzing ex-

periment data, we work on the MultiEye player for replaying
and annotating recordings of program comprehension stud-
ies (see fig. 1). The player displays gaze plot in source code
documents over time, together with changes in source code
and switching between documents, so the researcher may
easily annotate groups of fixations with patterns based on
the coding scheme from the EMIP workshops [2].

4. CONCLUSIONS
In this paper, we outlined minimal subset of data recorded

in program comprehension studies to allow other researchers
to replicate our study, reevaluate data analysis methods, or

even replay the recording session. Currently, we work on
tools for conducting and analyzing program comprehension
studies in our UXI Group Lab (https://www.pewe.sk/uxi/)
with 20 workstations with Tobii X2-60 eye trackers. Pro-
posed subset of data can be recorded in all current pop-
ular code editors, e.g., Eclipse, Microsoft Visual Studio,
Microsoft Visual Studio Code, and web editors like Code
Mirror, Monaco, etc.; and required raw gaze data can be
recorded using the SDKs of all major eye trackers manufac-
turers – Tobii and SMI.

5. ACKNOWLEDGMENTS
This work was partially supported by the STU Grant

scheme for Support of Young Researchers and it is the par-
tial result of the project Human Information Behavior in
the Digital Space, APVV-15-0508, funded by the Slovak Re-
search and Development Agency.

6. REFERENCES
[1] T. Busjahn et al. Eye tracking in computing education.

In Proc. of the 10th Annual Conf. on Int’l. Computing
Education Research, ICER ’14, 3–10, 2014. ACM.

[2] Coding Scheme, Eye Movements in Programming
Workshop, revision Feb. 15th., 2014, online:
http://emipws.org/sample-page/2013-analyzing-
experts-gaze/coding-scheme/#scheme

[3] K. Kevic et al. Eye gaze and interaction contexts for
change tasks – Observations and potential. In Journal
of Systems and Software, 2016. Elsevier.

[4] T. R. Shaffer et al. iTrace: enabling eye tracking on
software artifacts within IDE to support software
engineering tasks. In Proc. of ESEC/FSE 2015,
954–957, 2015. ACM.

[5] J. Tvarozek, M. Konopka, et al. Studying various
source code comprehension strategies in programming
education. In Proc. of EMIP’15: Models to Data,
Reports and Studies in Forestry and Natural Sciences,
no. 23, 25–26, 2016.

16

Comparing Novice and Expert Eye Movements
during Program Comprehension

Johannes Hofmeister∗, Jennifer Bauer†, Janet Siegmund‡, and Sven Apel§
University of Passau

Email: ∗johannes.hofmeister@uni-passau.de, †bauerjen@fim.uni-passau.de,
‡janet.siegmund@uni-passau.de, §apel@uni-passau.de

Norman Peitek
Leibniz Institute for Neurobiology,

Magdeburg

npeite@lin-magdeburg.de

Abstract—A recent eye-tracking study indicates that novices
and experts use different strategies to comprehend source code.
We are planning to replicate these results to understand the
mechanisms behind the different strategies. To control for effects
caused by the used stimulus materials, we are proposing a static
code measure to differentiate source code. The suggested measure
expresses the expected linearity of reading the code. We are plan-
ning to observe novices in a longitudinal study along their CS1 pro-
gramming course, and compare changes in their comprehension
strategies over time with the strategies of an expert sample. An
inexpensive eye-tracker will be used to obtain data about different
visual patterns.

I. INTRODUCTION

A recent eye-tracking study found that experts and novices

follow different paths while reading code [1]. The study re-

ports several interesting differences between these groups. For

example, the novices’ saccades where on average shorter, and

they focused on 52.4% of presented code elements, whereas

experts’ saccades were longer, and more focused, covering

41.3% of the presented elements. Further, the authors found that

novices follow story reading order (i.e., a linear left-to-right-

top-to-bottom reading progression similar to natural-language

texts), whereas experts exhibit less linear reading patterns. This

effect is likely based on experts’ increased experience. Experts

manage to identify and focus on relevant parts and are able

to switch between more complex contexts; thus, their saccades

appear more assertive.

To understand the described effects, we are planning a repli-

cation study. To this end, we analyzed the operationalization

of linearity, and found a difference regarding the linearity of

the snippets between experts and novices, as the authors also

noted. For example, the group of snippets seen by experts

had a median of 3 methods and a median length of 26 lines,

whereas the novice snippets had only a median 1.5 methods and

a median length of 15 lines of code. The snippets, which the

novices saw, contained fewer methods. The increased amount

of methods in the expert code snippets required experts to

jump more between different code entities than novices, who

saw mostly code with fewer methods, thus exhibiting fewer

saccades. We hypothesize that the amount of methods and

their structure (e.g., amount, location in the code, and spatial

relation between call and definition, etc.) may affect the order of

reading. This raises the question whether this effect results from

novices’ reliance on linear text reading skills, or from properties

of the snippets presented. Thus, we would like to replicate the

study, while controlling for differences caused by the stimulus

material, to isolate and further understand the effect.

II. OPERATIONALIZING LINEARITY

To operationalize linearity of code snippets, we defined and

evaluated a measure. Simply put, we describe a program’s

inherent structural linearity as a relation between the overall

jump length and the number of methods.

We built this measure based on the following reasoning:

Sequences of operations (i.e., statements) are read in the order

of their occurrence. Calls to structural units (e.g., routines,

functions, methods, etc.) cause deviations from this linear path,

requiring the reader ”to jump” to the definition of the symbol,

if it is locally available. A jump can be understood as a logical

saccade, that is, the reader’s forward movement from a method

call to the definition of the called method.

The idea is illustrated with an example in Listings 1 and 2,

which show equivalent codes with different levels of linearity.

When developers encounter a method call, they will have

to jump the definition of called method (e.g., for Listing 1,

from the call of inBetween to its declaration). The distances

(in number of lines) between all calls in a program and the

matching method declarations are summed and later divided by

the program’s average method length.

This implies that a program with very long methods is con-

sidered more linear than a program with fewer, shorter methods.

Jumping between a call and a called method’s signature makes

the program less linear, thus a program with many methods is

less linear than a program with fewer methods. Method length

affects the jump length. Long methods by themselves are more

linear than shorter methods, but also affect the length of each

jump.

To provide an example, Listing 1 shows a single jump (i.e.,

a single call to the additional method besides main), whereas

Listing 2 exhibits two jumps (i.e., call to both constructor

and method). For Listing 1 our measure is calculated like

this: The call and the method declaration are 6 lines apart,

and the average method length is 3.5 ((3 + 4)/2). Thus, the

snippet has a linearity score of 1.7. Listing 2 contains two

jumps (11 + 6 = 17), and has an average method length of

17

((4 + 3 + 4)/3 = 3.6), and, thus, scores 17/3.6 = 4.9, and is

considered less linear than the code in Listing 1. These values

help to compare code snippets against each other on an ordinal

scale (i.e., Listing 2 is less linear than Listing 1).

Listing 1: Two methods

public class Interval {

public static inBetween(int number, int lower,
int upper) {
return (lower < number) && (number < upper);

}

public static void main(String[] args) {
Boolean result = inBetween(5, 1, 10);
System.out.println(result);

}
}

Listing 2: Complex structure

public class Interval {
int lower = 0;
int upper = 0;

public Interval (int lower, int upper) {
this.lower = lower;
this.upper = upper;

}

public Boolean contains(int number) {
return (this.lower < number) && (number <

this.upper);
}

public static void main(String[] args) {
Boolean result = new Interval(2, 10).

contains(3);
System.out.println(result);

}
}

III. EXPERIMENT DESIGN

This goal of this paper is to answer the following research

questions:

1) RQ1: Do novices read code differently than experts?

2) RQ2: Are differences best explained by participants’

strategies or properties of the stimulus material?

To answer these questions, we are planning the following

experiment:

A. Participants

To replicate the original study as closely as possible, we

investigate a group of novices and experts. The novices are

part of a longitudinal study. To this end, we recruit them

from a programming course at the University of Passau, and

invite them to participate in the study before, during, and after

the course. By tracking the learning efforts of the students in

an educational setting, we control for the participant’s lack

of experience with reading less linear source code snippets.

Experts are recruited at an industry venue and via the Internet.

B. Materials
In a first iteration, we are planning to replicate the results in

the study using the original code snippets. In a later iteration,

we investigate whether the measure suggested above is feasible

to differentiate other code snippets. We add further snippets,

ensuring that they are comparable based on their linearity, to

investigate whether experience or the properties of the code

account for inter-individual differences.
For our replication, we use a Tobii Eye-X eye tracker. The

tracker is unobtrusive, inexpensive, and offers sufficient spatial

and temporal resolution to trace participants’ visual attention.

The measures suggested by the original authors, such as el-

ement coverage and saccade lengths, should be reproducible

with this apparatus.

IV. EXPECTED RESULTS

By replicating the original results, we aim to further under-

stand differences between novices and experts. Other studies

have shown that experts and novices apply different strategies

(e.g., experts apply top-town strategies driven by beacons,

whereas novices rely on bottom-up comprehension strategies)

[2], [3]. The goal of our replication is to find further support for

these processes and identify details of their mechanisms.

V. DISCUSSION

The proposed measure represents a value that differentiates

different code snippets based on their linearity, that is, a reader’s

expected positional progression when reading the program. We

evaluated this measure for its face validity, in a pilot study. The

results are pending.
Our measure accounts for static differences in the code.

It is sensitive to subtle variations (e.g., insertions of empty

lines) and can be augmented to represent further structures that

affect linearity of code for example, ambiguous jumps (such as

overloads) are multiplied with the number of possible targets

for the jump, and loops, or recursive structures are penalized by

squaring the jump distance. These kinds of structures render the

program less linear.
Values for this measure form an ordinal scale or, in other

words, create a partial order: Values with similar integer parts

(e.g., 1.2 and 1.6) are considered similarly linear, as they reflect

minor differences, whereas larger differences (e.g., 2.4 and

8.6) indicate different progressions while reading the program

(e.g., a long method called from the top or the bottom of the

program).

ACKNOWLEDGMENTS

This work has been supported by the DFG grant SI 2045/2-1.

REFERENCES

[1] T. Busjahn, R. Bednarik, A. Begel, M. Crosby, J. H. Paterson, C. Schulte,
B. Sharif, and S. Tamm. Eye movements in code reading: Relaxing the
linear order. In 2015 IEEE 23rd International Conference on Program
Comprehension, pages 255–265, 2015.

[2] N. Pennington. Stimulus Structure and Mental Representations in Expert
Comprehension of Computer Programs. Cognitive Psychology, 19:295–
341, 1987.

[3] A. von Mayrhauser and A. Vans. Program comprehension during software
maintenance and evolution. Computer, 28(8):44–55, 1995.

18

row col

19

r r
r

r

r
r

r

For loop
iterating
over array
system.out.

println
(“Average”)

public
static void
printMethod
system.out.

println
(“even”)

20

Key Perspectives on
Dyslexia: An essential text for educators

Analyzing the
novice’s gaze. Technical Report TR-B-15-01

Visual Languages and Human-Centric
Computing, 2008. VL/HCC 2008. IEEE Symposium on

A Dictionary of Education

Research in developmental
disabilities

Neuropsychological
rehabilitation

Proc. 17th Intl ACM
SIGACCESS Conf.on Computers & Accessibility (pp. 173-
184). ACM.

Innovation in Teaching and Learning in Information and
Computer Sciences

Procedia Computer
Science

21

Enhancing fMRI Studies of Program Comprehension with
Eye-Tracking

Norman Peitek
Leibniz Institute for Neurobiology

Magdeburg, Germany
Norman.Peitek@lin-magdeburg.de

Janet Siegmund
University of Passau

Passau, Germany
siegmunj@fim.uni-passau.de

André Brechmann
Leibniz Institute for Neurobiology

Magdeburg, Germany
Brechmann@lin-magdeburg.de

ABSTRACT
Understanding program comprehension is a fundamental
research question, which requires multiple methods to fully
understand it. In this paper, we propose to combine eye-
tracking and functional magnetic resonance imaging (fMRI)
study to gain additional data for interpreting programmers’
cognitive processes during top-down comprehension. In this
paper, we present a proposal for such a combined approach.

1 INTRODUCTION
Eye-tracking is a promising technique to understand the
program-comprehension process. For example, the study of
Busjahn and others [1] compared eye movements of novices
and experts while reading code. Other novel approaches in
combination with eye-tracking have been studied to gain
insight into programmers’ cognitive processes. Fritz and oth-
ers [4] combined multiple psycho-physiological measures (i.e.,
electroencephalography (EEG), eye-tracking, electrodermal
activity) to predict the task difficulty based on the partici-
pants’ response. Similarly, Lee and others [5] used EEG and
eye-tracking to predict the task difficulty and programmer
expertise.

Currently, we are conducting a study on top-down compre-
hension with functional magnetic resonance imaging (fMRI).
Neuro-imaging allows us to observe activated brain areas,
and, thus, derive associated cognitive processes during pro-
gramming tasks. Previous studies have successfully used
fMRI [2, 3, 6], and we intent to explore a combination of
fMRI and eye-tracking. In our current study, we found that
fMRI alone is not sufficient to distinguish the fine-grained
differences in cognitive processes without asking the partici-
pants to provide aloud protocols, which will interfere with the
comprehension process. Eye-tracking may provide additional
data to better understand how programmers comprehend
code by observing their exact eye movements throughout an
entire session in an fMRI scanner.

With our current study, we aim at understanding how
code aspects, that is beacons and layout, affect top-down
comprehension. To this end, we asked participants to un-
derstand source-code snippets in a top-down process. To
enable participants to use top-down program comprehension,
we trained them on code snippets before the fMRI scanner

EMIP17 Spring Academy, Berlin, Germany
2017.

Figure 1: Time course of the BOLD response per condition
for BA 21.

session. We created four different versions of the code snip-
pets to evaluate the role of beacons (present or not) and
layout (pretty-printed according to code conventions or dis-
rupted, e.g., by adding obscuring line breaks). Additionally,
participants should locate syntax errors. As common in fMRI
sessions, each task (i.e., understanding a snippet or locating
syntax errors) was followed by a rest condition that provides
a baseline condition.

Preliminary analysis of the fMRI data showed that neither
beacons nor layout had a differential effect on overall brain
activation. For example, we could not find a significant dif-
ference in the activation pattern when beacons were present
compared to when they were not present. Additionally, the
fMRI data showed no effect between top-down comprehen-
sion and syntax-error finding, indicating that understanding
source code and locating syntax errors does not require dif-
ferent cognitive processes. These are interesting results that
seem to contradict common knowledge on program compre-
hension. However, fMRI data alone does not provide sufficient
information to explain these results.

One shortcoming of fMRI is the low temporal resolution.
Typically, the activation of a brain area happens in a matter of
seconds, but actual activity is happening considerably faster,
that is, within milliseconds. Thus, we cannot unravel rapid
processes during program comprehension (e.g., the initial
adjustment of a comprehension strategy when presenting a
manipulated source-code snippet). With eye tracking, we
plan to address this temporal gap. As example of what we
hope to better understand, we present the activation of one
brain area in Figure 1. The figure shows how the intensity
of the activation over the duration of one comprehension
task evolves, including 15 seconds before and after a task
(i.e., the rest conditions). We can see that independent of
the conditions, the change of activation increases to a peak

22

EMIP17 Spring Academy, 16–17 March, 2017, Berlin, Germany Norman Peitek, Janet Siegmund, and André Brechmann

after a few seconds, and then slowly drops to the level before
the task began. Two of the conditions (both with beacons
in the source code) show an initial higher BOLD response
peak at about 7 seconds. fMRI alone does not allow us to
explain this phenomenon. Eye-tracking could give us insight
how a participant forms a strategy during the comprehension
process when beacons are available and, thus, adjust their
approach to comprehend the code.

2 METHODOLOGY
Combining multiple psycho-physiological measurements can
mitigate weaknesses of a single-approach study. For our study
design, we plan to add eye tracking to the fMRI scanner
to gain further insights into the programmers’ comprehen-
sion, especially when the evolvement of activation of a brain
area is not sufficient. The fMRI scanner has the option to
add an EyeLink 1000 Plus1 eye-tracker, which is able to
track eye movements at 1000 Hz monocular and with 0.25°to
0.5°average accuracy. The high temporal resolution and spa-
tial accuracy allows us to record smallest eye-movements
while participants comprehend source code.

However, several adjustments to the experiment setup
need to be made. First, the stimulus software we use to
display the code snippets during the fMRI session (Presenta-
tion, available at http://www.neurobs.com/), has a plugin
to communicate with the EyeLink system. Consequently, the
stimulus software needs to incorporate receiving and storing
the eye-movement data, additionally to managing the snippet
display and response data. This needs to be tested with pilot
studies. Second, to initialize the EyeLink, we need to run a
calibration and validation process. This can either be done
with Presentation or directly with the EyeLink. We need
to evaluate, which method works more reliably. Third, we
need to add the preceding eye-tracker initialization before
starting the fMRI pre-measurements, which would make the
fMRI session longer. Currently, the session starts directly
with fMRI scans after a participant has been moved into
the scanner. Once the fMRI measurement has started, the
participant should be as motionless as possible to reduce
motion artifacts in the fMRI signal. However, the eye-tracker
calibration may need some head-position adjustments to suc-
ceed. Hence, we should perform the calibration only before
the fMRI measurement and avoid it while the experiment is
ongoing. Finally, we need to prevent drift of the eye-tracker.
Drift is the growing signal offset over time. An ongoing drift
throughout the 31-minute fMRI session deteriorates the eye-
tracker’s accuracy, such that we cannot reliably measure
where participants are looking at.

3 OPEN QUESTIONS
The proposed change to our experiment setup raises two
questions:

• Online Drift Correction or Re-Calibration The Eye-
Link system documentation describes a possible drift
for longer eye-tracking sessions. This could lead to a

1http://www.sr-research.com/eyelink1000plus.html

significant offset of the eye-tracking signal. Without
high accuracy of the eye-tracker, we lose critical infor-
mation what part of the source code a participant is
looking at. Consequently, we need to decide to either
implement an online drift correction (e.g., looking
at one fixed point during the rest periods) or to re-
calibrate and validate multiple times throughout the
experiment.

• Experiment Length The current experiment lasts 31
minutes. With pre- and post-measurements, the time
for a participant in the fMRI scanner adds up to
around 45 minutes. We gathered feedback from pre-
vious participants that the experiment is already at
the maximum of their concentration and that they
feel exhausted afterwards. This is understandable, as
participants have to lie as motionless as possible, but
have to concentrate on a cognitively demanding task.
If we add eye-tracking, the calibration and possible
re-calibration would lengthen the experiment further
and might lead to a declined performance during
the later programming tasks. Shortening the experi-
ment as alternative would decrease statistical power,
making it more difficult for us to detect relevant
effects.

Before implementing the proposed additions to the experi-
ment setup, we need to solve these questions.

4 ACKNOWLEDGMENTS
The authors’ work is supported by DFG grant SI 2045/2-1.

REFERENCES
[1] T. Busjahn, R. Bednarik, A. Begel, M. Crosby, J. H. Paterson,

C. Schulte, B. Sharif, and S. Tamm. 2015. Eye Movements in
Code Reading: Relaxing the Linear Order. In 2015 IEEE 23rd
International Conference on Program Comprehension. 255–265.
DOI:http://dx.doi.org/10.1109/ICPC.2015.36

[2] J. Duraes, H. Madeira, J. Castelhano, C. Duarte, and M. C.
Branco. 2016. WAP: Understanding the Brain at Software Debug-
ging. In Proc. Int’l Symposium Software Reliability Engineering
(ISSRE). IEEE, 87–92.

[3] Benjamin Floyd, Tyler Santander, and Westley Weimer. 2017.
Decoding the Representation of Code in the Brain: An fMRI Study
of Code Review and Expertise. In Proc. Int’l Conf. Software
Engineering (ICSE). IEEE. To appear.

[4] Thomas Fritz, Andrew Begel, Sebastian C. Müller, Serap Yigit-
Elliott, and Manuela Züger. 2014. Using Psycho-physiological
Measures to Assess Task Difficulty in Software Development. In
Proc. Int’l Conf. Software Engineering (ICSE). ACM, 402–413.

[5] Seolhwa Lee, Danial Hooshyar, Hyesung Ji, Kichun Nam, and
Heuiseok Lim. 2017. Mining Biometric Data to Predict Program-
mer Expertise and Task Difficulty. Cluster Computing (2017),
1–11. DOI:http://dx.doi.org/10.1007/s10586-017-0746-2

[6] Janet Siegmund, Christian Kästner, Sven Apel, Chris Parnin,
Anja Bethmann, Thomas Leich, Gunter Saake, and AndrÃČÂľ
Brechmann. 2014. Understanding Understanding Source Code
with Functional Magnetic Resonance Imaging. In Proc. Int’l Conf.
Software Engineering (ICSE). IEEE, 378–389.

23

Looking at Indentation
Analysing Gaze Movement during Program Comprehension with Indentations

Jennifer Bauer

University of Passau

bauerjen@fim.uni-passau.de

Johannes Hofmeister

University of Passau

johannes.hofmeister@uni-passau.de

Janet Siegmund

University of Passau

siegmunj@fim.uni-passau.de

Abstract
Indentations are commonly seen as important layout-aspects

in code. To study the effects of indentations on gaze move-

ment, we replicate a study about the relationship between

indentations and comprehensibility during which the partic-

ipants’ gaze will be recorded via eye tracking. As a result, we

expect that there is also a relationship between indentations

and aspects of reading behaviour.

1. Motivation
Indentations in source code are an essential part of program-

ming style. Developers use indentations to convey a pro-

gram’s structure to human readers. Some languages even

embrace them in their syntax (e.g., Python). Indentations

are believed to improve readability and consequently ease

program comprehension. Shneiderman and others tested the

difficulty of comprehending a Pascal code snippet depend-

ing on the level of indentation (0, 2, 4, 6 spaces) [1]. In their

study, the participants had to read code and their comprehen-

sion was measured using a quiz with multiple-choice ques-

tions and them writing a short text about the program’s func-

tion. They found that an indentation of 2 to 4 spaces leads to

the best performance in terms of mean score in the com-

prehension quiz. This seems reasonable, because when there

is too much indentation, the program is shifted to the right

and scanning becomes more difficult. On the other hand,

when there are no indentations, identifying associated parts

of code gets more difficult due to the lack of visual structure

in the code.

While the results of this study are interesting, they are out-

dated, and do not reflect modern representations of source

code. In our study, we want to replicate the original study

with two changes:

First, instead of Pascal, we use Java, because it is one of

the most widely used programming languages today. Sec-

ond, we will record the eye movements of participants with

an eye tracker to get an understanding of where participants

look, depending on the indentation.

We will address the following research questions:

1. Which level of indentation is optimal for program
comprehension?
With this question, we want to evaluate whether the re-

sults of the original study still hold today for modern

programming languages. This gives us valuable insights

about the effect of indentation, and allows us to evaluate

common coding conventions (and possibly give recom-

mendations for updating them).

By using an eye tracker, we can determine the points of

fixation on the code and saccades between them. Few

saccades should indicate a good level of indentation.

2. What challenges do different levels of indentation
pose while reading code?
An optimal level of indentation can increase readability

of code, such that programmers can extract its mean-

ing faster. When having none or small indentations in

the code, readers might take longer to understand the

general idea and structure of the code. This could cause

an increased number of saccades, as the readers have to

jump more in the code to figure out the overall structure.

On the other side, when there are very large indentations,

jumping between lines with indentations becomes longer,

which might fatigue the eyes too fast.

2. Experiment Design
The experiment is designed as follows:

2.1 Material and Task
We use several Java code snippets and with various levels

of indentation, that is, 0, 2, 4, 6 and 8 spaces. We include

8 spaces, because the differences between the different in-

dentations are quite small. For each code snippet, the par-

ticipants’ comprehension will be tested. To this end, we in-

tend to ask question about the output of the program (e.g.,

’What is the output of the program, if the input is 4?’) and

ask for a short textual description about the program’s func-

tion (e.g., ’Describe what the program does’). We also intend

to include a question about the appearance of variables in the

snippet (e.g., ’Does the variable length play a role in the pro-

gram?’). These measures combined will allow us to evaluate

24

whether a participant understood one snippet, as they test

both recognition and recall. There will be also a question

about the participant’s subjective rating of difficulty of the

program on a scale of 1 to 7. This can later be compared

to their score on the other questions, which could reveal,

whether the participants experienced the code as difficult as

their results on the question might suggest. To evaluate the

participants’ programming experience, we will use an ques-

tionnaire [2], as experience influences the handling of unex-

pected (in this case unexpectedly indented) code.

2.2 Participants
The participants in our study will be both novices and ex-

perts differentiated by the questionnaire about programming

experience. We include both experience levels, because we

expect that experts might not be as much affected by missing

or excessive indentations as novices. Shneiderman and oth-

ers found, for example, that novices are more uncomfortable

with non-intended code than experts.

2.3 Apparatus
In our study, we use a Tobii-EyeX eye tracker. This tracker

is unobtrusive and easy to use, as it is attached to the screen

like a bar, and it samples with 60hz, which is sufficient for

our measurements. Additionally, it has the advantage of a

low price and an easy installation.

2.4 Execution
Due to the eye tracking, we conduct our experiment with

one participant at a time. The participant will be informed

that he/she will be eye tracked and given Java programs

and questions about them. Next, the eye tracker has to be

calibrated and the recording will start. The participant is then

given the code snippets and answers the according questions

one after another within the given 20 minutes. At the end, the

participant completes the questionnaire about programming

experience.

2.5 Variables
In our experiment, we alter the independent variable of in-

dentation of the code snippet with 0, 2, 4, 6 or 8 spaces.

Programming experience is an independent variable in our

study as we want to measure the dependent variables also as

a function of experience.

As dependent variables, we measure comprehension as

described above. We determine the points of fixation on

the snippet with their x- and y-coordinates. A fixation oc-

curs when the participant spends more then 0.3 ms on one

point.We also measure the number of saccades, which take

place when there is no fixation, as well as their length, i.e.

the distance between their start and end coordinates.

2.6 Planned Analysis
The following relations concerning indentation will be anal-

ysed:

• Relation between level of indentation and comprehension

(correct answers of the questions/ correct description of

the program’s function in the short text) to find the opti-

mal indentation

• Relation between level of indentation and points of fixa-

tion on the code to determine, whether different indenta-

tions change the parts of the code on which the partici-

pants concentrate on

• Relation between level of indentation and numbers of

saccades to determine, which indentations make the par-

ticipants jump more in the code

• Relation between level of indentation and length of sac-

cades to determine, whether which indentations require

the participants to make longer jumps in the code.

To this end, we examine statistic differences of the respective

factors depending on the level of indentation.

3. Expected Results
In general, we expect to get similar results to the origi-

nal study for the relation of code indentation and compre-

hension. The participant will probably also rate the diffi-

culty of the code differently depending on the level of in-

dentation, because novices are trained on correct style of

code and might feel uncomfortable with from their point

of view unusual indentation. Non-intended code should be

rated equally difficult to comprehend by experts and novices,

as it does not give hints about the structure of the code.

Concerning the gaze movement, we expect that indentations

have an effect on saccades and their length, as a lack of

indentations probably makes it more difficult to grasp the

structure of the code, whereas long indentations cause more

jumping between lines of code.

References
[1] R. Miara, J. Musselman, J. Navarro and B. Shneiderman:

’Program Indentation and Comprehensibility’ (1983)

[2] J. Siegmund, C. Kästner, J. Liebig, S. Apel and S. Hanenberg:

’Measuring and Modeling Programming Experience’ (2014)

25

26

