
Dario Salvucci, Drexel University. Eye Movements & Programming 2015, November 23, 2015.

Eye Movements & Cognitive Models

1

Dario Salvucci
Drexel University

Dario Salvucci, Drexel University. Eye Movements & Programming 2015, November 23, 2015.

Eye Movements & Cognition

■ Eye movements help us understand cognition
– What is this driver thinking?
– Could you guess the driver’s intentions without them?

2

Dario Salvucci, Drexel University. Eye Movements & Programming 2015, November 23, 2015.

Eye Movements & Cognition

■ Cognition helps us understand eye movements
– Why does the driver look at the lead car?
– Why doesn’t the driver look at oncoming traffic?

3

Dario Salvucci, Drexel University. Eye Movements & Programming 2015, November 23, 2015.

Eye Movements & Cognition

■ Models help us understand both
– How does is gaze information being acquired and used?
– What information is being captured without gaze?

4

Dario Salvucci, Drexel University. Eye Movements & Programming 2015, November 23, 2015.

Eye Movements & Cognition

■ Eye movements help us understand cognition
– Without eye movements, we would see…

• a long delay
• a keyed response

– What strategy is being used to solve the equation?

5

Dario Salvucci, Drexel University. Eye Movements & Programming 2015, November 23, 2015.

Eye Movements & Cognition

■ Cognition helps us understand eye movements
– Sometimes, eye movements don’t behave as expected
– How do we explain “misplaced” or missing fixations?

6

Dario Salvucci, Drexel University. Eye Movements & Programming 2015, November 23, 2015.

Eye Movements & Cognition

■ Models help us understand both
– They give us a way to tie the eyes and brain together

7

Dario Salvucci, Drexel University. Eye Movements & Programming 2015, November 23, 2015.

■ Cognition, eye movements use the same processes
and mechanisms in all these domains

■ So we should explain them with a unified set of
processes and mechanisms

Eye Movements & Cognition

8

Dario Salvucci, Drexel University. Eye Movements & Programming 2015, November 23, 2015. 9

Cognitive Architectures

■ Cognitive architecture = psychological theory +
computational framework

• like a human-modeling programming language
• built-in “functions”

– e.g., memory store and recall, goal and subgoal setting,
perceptual-motor behavior

• built-in limitations
– e.g., forgetting, errors, perceptual-motor parameters

 à Models are constrained within larger theory
 à Models are psychologically plausible

Dario Salvucci, Drexel University. Eye Movements & Programming 2015, November 23, 2015.

Cognitive Architectures

10

Brain “Hardware”
core mechanisms 

that all people have

Domain “Software”
knowledge for

individual domains

Cognitive Architecture

model of
driving

model of
doing math
problems

model of
washing 
dishes

model of
buying 

groceries

model of
mowing a 

lawn

Dario Salvucci, Drexel University. Eye Movements & Programming 2015, November 23, 2015.

ACT-R

11

Matching (Striatum)

Selection (Pallidum)

Execution (Thalamus)

Procedural Module  
(Basal Ganglia)

Retrieval Buffer  
(VLPFC)

Goal Buffer  
(ACC)

Manual Buffer  
(Motor)

Visual Buffer  
(Parietal)

Declarative Module  
(Temporal/Hippocampus)

Goal Module  
(not identified)

Visual Module  
(Occipital/Parietal)

Manual Module  
(Motor/Cerebellum)

External World

Procedural Module:
procedural skill as 

goal-directed production rules

Goal Buffer:
directs procedural module 

to goal-relevant actions

Declarative Module:
factual knowledge as 

“chunks” of information

Dario Salvucci, Drexel University. Eye Movements & Programming 2015, November 23, 2015.

ACT-R Vision

■ Spotlight theory of attention

– limited fovea of high resolution
– large periphery of degraded resolution

12

how we see the worldwhat the world looks like

Dario Salvucci, Drexel University. Eye Movements & Programming 2015, November 23, 2015.

ACT-R Vision

■ “Where” process is basically constant time
■ “What” process depends on what’s being encoded

– e.g., the vs. antidisestablishmentarianism
– e.g., hän vs. peruspalveluliikelaitoskuntayhtymä
– (but general visual objects are a challenge: r? a?)

13

+visual-location>

=visual-location>
+visual>

=visual>

Find a location in my visual field
that satisfies a set of constraints

Given that I have the location,
move my attention to that location

Use the encoded object

“Where”

“What”

Dario Salvucci, Drexel University. Eye Movements & Programming 2015, November 23, 2015.

ACT-R Vision + EMMA

■ EMMA dictates how visual attention ≠ fixation
– ACT-R model generates a shift of attention
– soon after (~200 ms) — maybe — the eyes move to the

target of attention [based on E-Z Reader]
• “labile” stage that can be cancelled if a new shift occurs
• “non-labile” stage that cannot be cancelled

– but…
• movement can miss target, requiring a re-fixation
• attention can shift quickly again, skipping the first target

14

5 x / 28 = 15 / 7

Dario Salvucci, Drexel University. Eye Movements & Programming 2015, November 23, 2015. 15

Driving as a Single Task

■ Two-level steering with near & far points

■ ACT-R model procedural steps

Procedural

Steering Update

Visual

Find
near point

Find
far point

Update
steering

Check &
repeat

(plus motor actions for
steering and pedals)

Find
near point

Find
far point

50 ms

Dario Salvucci, Drexel University. Eye Movements & Programming 2015, November 23, 2015. 16

Driving as a Single Task

Dario Salvucci, Drexel University. Eye Movements & Programming 2015, November 23, 2015.

Driving as a Single Task

■ Curve negotiation

17

Human Model

Steering
Angle

Lane
Position

Dario Salvucci, Drexel University. Eye Movements & Programming 2015, November 23, 2015.

Driving as a Single Task

■ Lane changing

18

Human Model

Steering
Angle

Lane
Position

Dario Salvucci, Drexel University. Eye Movements & Programming 2015, November 23, 2015.

Driving as a Single Task

■ Gaze time on regions of interest

19

Dario Salvucci, Drexel University. Eye Movements & Programming 2015, November 23, 2015.

Driving as a Single Task

■ Human driver...

20

Dario Salvucci, Drexel University. Eye Movements & Programming 2015, November 23, 2015.

■ Model driver...

21

Driving as a Single Task

Dario Salvucci, Drexel University. Eye Movements & Programming 2015, November 23, 2015.

A Word about Abstraction

■ At what “level of abstraction” should we model?
– individual fixations and saccades
– individual gazes
– aggregate gaze time on regions
– or higher levels? or lower levels?

■ Many different levels may be valid, and useful

22

Dario Salvucci, Drexel University. Eye Movements & Programming 2015, November 23, 2015.

Modeling & Programming

■ Lots of work in the 1980s-90s on modeling &
programming within the ACT-R architecture

■ Practically all of it was done in the context of  
Intelligent Tutoring Systems for programming

■ Some of this work includes…
– Model + tutor for programming recursion (Pirolli et al.)

• “students can learn very different rules for recursive
programming from the same example programs”

– ACT Programming Tutor (Corbett et al.)
• knowledge tracing: keeping a “skill-o-meter”

– [Also: Eye movements in (math) tutoring systems]

23

Dario Salvucci, Drexel University. Eye Movements & Programming 2015, November 23, 2015.

Intelligent Tutoring Systems

■ ITS = system that tracks student cognition and
teaches accordingly

■ Central idea: Model tracing
– that is, relating observed actions with unobservable

cognitive states
– in essence, “think” along with the student and keep track

of cognitive state
• simulate all possible “thought” sequences
• find which model sequence matches human behavior
• make the best matching sequence the current  

estimated cognitive state
• “cognitive state” = state of the cognitive model

24

Dario Salvucci, Drexel University. Eye Movements & Programming 2015, November 23, 2015.

Model Tracing

25

rule 
firing

conflict  
resolution

Cognitive 
Model

Observed
Actions

Dario Salvucci, Drexel University. Eye Movements & Programming 2015, November 23, 2015.

Model Tracing

26

“buggy” rule

Cognitive 
Model

Observed
Actions

Dario Salvucci, Drexel University. Eye Movements & Programming 2015, November 23, 2015.

ACT Programming Tutor (Corbett et al.)

27

Dario Salvucci, Drexel University. Eye Movements & Programming 2015, November 23, 2015.

ACT Programming Tutor (Corbett et al.)

28

Dario Salvucci, Drexel University. Eye Movements & Programming 2015, November 23, 2015.

ACT Programming Tutor (Corbett et al.)

29

Dario Salvucci, Drexel University. Eye Movements & Programming 2015, November 23, 2015.

Eye Movements & Tutoring (Gluck)

30

Dario Salvucci, Drexel University. Eye Movements & Programming 2015, November 23, 2015.

Eye Movements & Tutoring (Gluck)

31

Dario Salvucci, Drexel University. Eye Movements & Programming 2015, November 23, 2015.

Eye Movements & Tutoring (Gluck)

■ Eye movements helped to understand…
– Failure to read bug messages
– Disambiguation of an error
– Time off-task
– and more

■ Key: Looking for “instructional opportunities” that
would not be present without eye movements
– Human tutors can have a huge impact (e.g., raise a

student 2 standard deviations from mean!)
– Computer tutors can manage about 1 standard deviation

• maybe measures like eye movements can help close the gap

32

Dario Salvucci, Drexel University. Eye Movements & Programming 2015, November 23, 2015.

Intelligent Tutoring

■ So, there were models of programming built into
these intelligent tutors

■ And there have been tutors that (sort of) use EMs
■ But interestingly…

– there are many tutors today (for 300,000+ students)
– but no (ACT-R) programming models since 1990s!
– tutors all based on 1990s cognitive architecture, with  

1 rule ≈ 1-5 seconds of action
• modeling behavior at a more strategic level

– modern architectures: 1 rule ≈ 50-250 ms of action
• good at predicting eye movements, but harder to build tutors at

the strategic level

33

Dario Salvucci, Drexel University. Eye Movements & Programming 2015, November 23, 2015.

Modeling & Programming

■ What lessons might we draw from ACT-R’s history
of modeling, tutoring, and eye movements?
– Modeling the cognitive processes in programming is

difficult, but can be done.
• the cognitive architecture can help guide representations and

skill sets to those that are psychologically plausible

– There is sometimes a large leap from eye-movement
patterns to cognitive strategies.
• Model Tracing is very relevant and may help here
• this is where the levels of abstraction come in…  

at what level are you most interested in learning about?

■ So how do we map eye movements to strategies 
in computer programming?

34

Dario Salvucci, Drexel University. Eye Movements & Programming 2015, November 23, 2015.

Modeling & Programming

■ EMIP 2014 coding scheme

35

Patterns (observable)
Flicking
JumpControl
JustPassingThrough
LinearHorizontal
LinearVertical
RetraceDeclaration
RetraceReference
Scan, Signatures
Thrashing
Word(Pattern)-Matching

Strategies (unobservable)
AttentionToDetail
DataFlow
Debugging
Deductive
DesignAtOnce
FlowCycle
Inductive
Interprocedural-ControlFlow
Intraprocedural-ControlFlow
StrayGlance
TestHypothesis
Touchstone
Trial&Error
Wandering

Dario Salvucci, Drexel University. Eye Movements & Programming 2015, November 23, 2015.

Modeling & Programming

■ Possible patterns/ 
low-level strategies:
– read everything 

(syntax checking?)
– read words 

(not punctuation)
– read method names,  

speak them out
■ Models have…

– ACT-R rules that specify the strategy
– ACT-R architecture that drive the underlying processes 

(e.g., visual attention shifts leading to eye movements)

36

public	 class	 Rectangle	 {	
private	 int	 x1	 ,	 y1	 ,	 x2	 ,	 y2	 ;	
public	 Rectangle	 (int	 x1	 ,	 int	 y1	 ,	 int	 x2	 ,	 int	 y2)	 {	 	

this.x1	 =	 x1	 ;	
this.y1	 =	 y1	 ;	
this.x2	 =	 x2	 ;	
this.y2	 =	 y2	 ;	

}	
public	 int	 width	 ()	 {	 return	 this.x2	 –	 this.x1	 ;	 }	
public	 int	 height	 ()	 {	 return	 this.y2	 –	 this.y1	 ;	 }	
public	 double	 area	 ()	 {	 return	 this.width	 ()	 *	 this.height	 ()	 ;	 }	
public	 staCc	 void	 main	 (String	 []	 args)	 {	

Rectangle	 rect1	 =	 new	 Rectangle	 (0	 ,	 0	 ,	 10	 ,	 10)	 ;	
System.out.println	 (rect1.area	 ())	 ;	
Rectangle	 rect2	 =	 new	 Rectangle	 (5	 ,	 5	 ,	 10	 ,	 10)	 ;	
System.out.println	 (rect2.area	 ())	 ;	

}	
}

Dario Salvucci, Drexel University. Eye Movements & Programming 2015, November 23, 2015.

Conclusions

■ Eye movements help us understand cognition
– BUT they are not the only useful source of data,  

and are best viewed as complementary with other data
■ Cognition helps us understand eye movements

– BUT the hidden connection between the eyes and the
mind will always make this a non-trivial process

■ Models help us understand both
– BUT there are many types of models — all of them are

“wrong” :) but many of them are useful!
– plus, models can be used for engineering development of

model-based systems (like tutoring systems)

37

Dario Salvucci, Drexel University. Eye Movements & Programming 2015, November 23, 2015. 1

ACT-R Modeling

▪ If you’d like to see/run a working model,  
please download and extract…

▪ Launch “ACT-R-prog.jar” 
then open “Program1.actr”  
and click “Run”:

http://cog.cs.drexel.edu/emip15.zip

Dario Salvucci, Drexel University. Eye Movements & Programming 2015, November 23, 2015. 2

ACT-R Modeling

▪ The canonical implementation is in LISP:
– http://act-r.psy.cmu.edu
– like many (most?) systems developed since the early

years of AI, Cognitive Science
▪ LISP is a cool language, but it’s often inconvenient

– environments are uneven across platforms
– task/interface development is more difficult

▪ We will try an ACT-R system implemented in Java
– actually, you don’t need to know Java at all to use it 

(ACT-R has its own language)
– though you do need Java to program new tasks

– your “ACT-R-prog.jar” has a programming task built-in

Dario Salvucci, Drexel University. Eye Movements & Programming 2015, November 23, 2015. 3

ACT-R Modeling

Brain “Hardware”
core mechanisms 

that all people have

Domain “Software”
knowledge for

individual domains

Cognitive Architecture

model of
driving

model of
doing math
problems

model of
washing 
dishes

model of
buying 

groceries

model of
mowing a 

lawn

Dario Salvucci, Drexel University. Eye Movements & Programming 2015, November 23, 2015. 4

Model Overview

(set-‐task	 "prog.Programming")	

(sgp	
	 	 	 	 :emma	 t	
	 	 	 	 :visual-‐num-‐finsts	 300	
	 	 	 	 :visual-‐finst-‐span	 300	
	 	 	 	 :visual-‐movement-‐tolerance	 1	
	 	 	 	 :v	 t	
)	

(add-‐dm	 	
	 	 	 	 (goal	 isa	 read)	
)	
(goal-‐focus	 goal)	

(p	 read*find-‐line	
…	
)

Task Specification

Parameter Settings

Declarative Memory

Goal Specification

Production Rules

Dario Salvucci, Drexel University. Eye Movements & Programming 2015, November 23, 2015. 5

Task Code

public	 class	 Programming	 extends	 actr.task.Task	 {	
private	 String[]	 TEXT	 =	 {	

"public	 class	 Rectangle	 {“,	
"private	 int	 x1	 ,	 y1	 ,	 x2	 ,	 y2	 ;”,	
…	

};	

public	 Programming()	 {	 …	 }	

@Override	
public	 void	 start()	 {	

//	 draw	 TEXT	 on	 the	 screen	 using	 labels	
processDisplay();	 	 //	 to	 register	 items	 with	 visual	 system	

}	
}

Dario Salvucci, Drexel University. Eye Movements & Programming 2015, November 23, 2015. 6

Model Overview

(p	 read*find-‐line	
	 	 	 	 =goal>	
	 	 	 	 	 	 	 	 isa	 read	
	 	 	 	 	 	 	 	 line	 nil	
	 	 	 	 ?visual-‐location>	
	 	 	 	 	 	 	 	 state	 free	
	 	 	 	 	 	 	 	 -‐	 buffer	 requested	
	 	 	 	 ?visual>	
	 	 	 	 	 	 	 	 state	 free	
	 	 	 	 	 	 	 	 buffer	 empty	
==>	
	 	 	 	 +visual-‐location>	
	 	 	 	 	 	 	 	 isa	 visual-‐location	
	 	 	 	 	 	 	 	 screen-‐y	 lowest	
	 	 	 	 	 	 	 	 :attended	 nil	
)

Define	 a	 production	 “read*find-‐line”	
IF	 	 	 	 	 the	 goal…	

is	 of	 type	 “read”	
and	 the	 line	 is	 currently	 empty	

and	 the	 visual-‐location	 status…	
is	 free	
with	 an	 empty	 buffer	

and	 the	 visual	 status	
is	 free	
with	 an	 empty	 buffer	

THEN	
start	 a	 new	 visual-‐location	 process	

for	 some	 visual	 location	
at	 the	 lowest	 ‘y’	 coordinate	
that	 has	 not	 yet	 been	 attended

Dario Salvucci, Drexel University. Eye Movements & Programming 2015, November 23, 2015. 7

Model Overview

(p	 read*note-‐line	
	 	 	 	 =goal>	
	 	 	 	 	 	 	 	 isa	 read	
	 	 	 	 	 	 	 	 line	 nil	
	 	 	 	 =visual-‐location>	
	 	 	 	 	 	 	 	 isa	 visual-‐location	
	 	 	 	 	 	 	 	 screen-‐y	 =y	
==>	
	 	 	 	 =goal>	
	 	 	 	 	 	 	 	 line	 =y	
)

Define	 a	 production	 “read*note-‐line”	
IF	 	 	 	 	 the	 goal…	

is	 of	 type	 “read”	
and	 the	 line	 is	 currently	 empty	

and	 the	 visual-‐location	 contains	 a	 chunk…	
of	 type	 visual-‐location	
at	 a	 particular	 ‘y’	 coordinate	 (=y)	

THEN	
change	 the	 goal	

to	 note	 the	 found	 ‘y’	 coordinate

Dario Salvucci, Drexel University. Eye Movements & Programming 2015, November 23, 2015. 8

Model Overview

(p	 read*find-‐token	
	 	 	 	 =goal>	
	 	 	 	 	 	 	 	 isa	 read	
	 	 	 	 	 	 	 	 line	 =y	
	 	 	 	 ?visual-‐location>	
	 	 	 	 	 	 	 	 state	 free	
	 	 	 	 	 	 	 	 -‐	 buffer	 requested	
	 	 	 	 ?visual>	
	 	 	 	 	 	 	 	 state	 free	
	 	 	 	 	 	 	 	 buffer	 empty	
==>	
	 	 	 	 =goal>	
	 	 	 	 	 	 	 	 line	 =y	
	 	 	 	 +visual-‐location>	
	 	 	 	 	 	 	 	 isa	 visual-‐location	
	 	 	 	 	 	 	 	 screen-‐y	 =y	
	 	 	 	 	 	 	 	 screen-‐x	 lowest	
	 	 	 	 	 	 	 	 :attended	 nil	
)

(p	 read*encode-‐token	
	 	 	 	 =goal>	
	 	 	 	 	 	 	 	 isa	 read	
	 	 	 	 	 	 	 	 line	 =y	
	 	 	 	 =visual-‐location>	
	 	 	 	 	 	 	 	 isa	 visual-‐location	
	 	 	 	 ?visual>	
	 	 	 	 	 	 	 	 state	 free	
	 	 	 	 	 	 	 	 buffer	 empty	
==>	
	 	 	 	 +visual>	
	 	 	 	 	 	 	 	 isa	 move-‐attention	
	 	 	 	 	 	 	 	 screen-‐pos	 =visual-‐location	
)

(p	 read*continue-‐line	
	 	 	 	 =goal>	
	 	 	 	 	 	 	 	 isa	 read	
	 	 	 	 	 	 	 	 line	 =y	
	 	 	 	 =visual>	
	 	 	 	 	 	 	 	 value	 =text	
==>	
	 	 	 	 !output!	 (=text)	
)	

(p	 read*done-‐line	
	 	 	 	 =goal>	
	 	 	 	 	 	 	 	 isa	 read	
	 	 	 	 	 	 	 	 line	 =y	
	 	 	 	 ?visual-‐location>	
	 	 	 	 	 	 	 	 state	 error	
==>	
	 	 	 	 =goal>	
	 	 	 	 	 	 	 	 line	 nil	
	 	 	 	 -‐visual-‐location>	
)

Dario Salvucci, Drexel University. Eye Movements & Programming 2015, November 23, 2015. 9

> (run)

 0.000 vision unrequested [vision~63]
 0.000 procedural start
 0.049 procedural ** READ*NOTE-LINE **
 0.098 procedural ** READ*FIND-TOKEN **
 0.098 vision find-location [vision~66]
 0.147 procedural ** READ*ENCODE-TOKEN **
 0.147 vision move-attention
 0.168 vision encoding-complete [word~69]
 0.217 procedural ** READ*CONTINUE-LINE **
"public"
 0.266 procedural ** READ*FIND-TOKEN **
 0.266 vision find-location [vision~72]
 0.282 eye preparation-complete [word~69]
 0.315 procedural ** READ*ENCODE-TOKEN **
 0.315 vision move-attention
 0.356 eye execution-complete [word~69]
 0.370 vision encoding-complete [word~75]
 0.419 procedural ** READ*CONTINUE-LINE **
"class"

Simulation Run

	emip
	emip2

