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Eye Movements & Cognitive Models
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Eye Movements & Cognition

■ Eye movements help us understand cognition
– What is this driver thinking?
– Could you guess the driver’s intentions without them?
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Eye Movements & Cognition

■ Cognition helps us understand eye movements
– Why does the driver look at the lead car?
– Why doesn’t the driver look at oncoming traffic?
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Eye Movements & Cognition

■ Models help us understand both
– How does is gaze information being acquired and used?
– What information is being captured without gaze?
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Eye Movements & Cognition

■ Eye movements help us understand cognition
– Without eye movements, we would see…

• a long delay
• a keyed response

– What strategy is being used to solve the equation?
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Eye Movements & Cognition

■ Cognition helps us understand eye movements
– Sometimes, eye movements don’t behave as expected
– How do we explain “misplaced” or missing fixations?
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Eye Movements & Cognition

■ Models help us understand both
– They give us a way to tie the eyes and brain together
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■ Cognition, eye movements use the same processes 
and mechanisms in all these domains

■ So we should explain them with a unified set of 
processes and mechanisms

Eye Movements & Cognition
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Cognitive Architectures

■ Cognitive architecture = psychological theory + 
computational framework

• like a human-modeling programming language
• built-in “functions”

– e.g., memory store and recall, goal and subgoal setting, 
perceptual-motor behavior

• built-in limitations
– e.g., forgetting, errors, perceptual-motor parameters

 à Models are constrained within larger theory
 à Models are psychologically plausible
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Cognitive Architectures
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ACT-R
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ACT-R Vision

■ Spotlight theory of attention

– limited fovea of high resolution
– large periphery of degraded resolution
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ACT-R Vision

■ “Where” process is basically constant time
■ “What” process depends on what’s being encoded

– e.g.,  the  vs.  antidisestablishmentarianism
– e.g.,  hän  vs.  peruspalveluliikelaitoskuntayhtymä
– (but general visual objects are a challenge: r? a?)
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+visual-location>

=visual-location>
+visual>

=visual>

Find a location in my visual field 
that satisfies a set of constraints

Given that I have the location, 
move my attention to that location

Use the encoded object

“Where”

“What”
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ACT-R Vision + EMMA

■ EMMA dictates how visual attention ≠ fixation
– ACT-R model generates a shift of attention
– soon after (~200 ms) — maybe — the eyes move to the 

target of attention  [based on E-Z Reader]
• “labile” stage that can be cancelled if a new shift occurs
• “non-labile” stage that cannot be cancelled

– but…
• movement can miss target, requiring a re-fixation
• attention can shift quickly again, skipping the first target
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Driving as a Single Task

■ Two-level steering with near & far points

■ ACT-R model procedural steps

Procedural

Steering Update

Visual

Find
near point

Find
far point

Update
steering

Check &
repeat

(plus motor actions for
steering and pedals)

Find
near point

Find
far point

50 ms
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Driving as a Single Task
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Driving as a Single Task

■ Curve negotiation
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Driving as a Single Task

■ Lane changing
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Driving as a Single Task

■ Gaze time on regions of interest
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Driving as a Single Task

■ Human driver...
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■ Model driver...
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Driving as a Single Task
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A Word about Abstraction

■ At what “level of abstraction” should we model?
– individual fixations and saccades
– individual gazes
– aggregate gaze time on regions
– or higher levels?  or lower levels?

■ Many different levels may be valid, and useful
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Modeling & Programming

■ Lots of work in the 1980s-90s on modeling & 
programming within the ACT-R architecture

■ Practically all of it was done in the context of  
Intelligent Tutoring Systems for programming

■ Some of this work includes…
– Model + tutor for programming recursion (Pirolli et al.)

• “students can learn very different rules for recursive 
programming from the same example programs”

– ACT Programming Tutor (Corbett et al.)
• knowledge tracing: keeping a “skill-o-meter”

– [Also:  Eye movements in (math) tutoring systems]
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Intelligent Tutoring Systems

■ ITS = system that tracks student cognition and 
teaches accordingly

■ Central idea:  Model tracing
– that is, relating observed actions with unobservable 

cognitive states
– in essence, “think” along with the student and keep track 

of cognitive state
• simulate all possible “thought” sequences
• find which model sequence matches human behavior
• make the best matching sequence the current  

estimated cognitive state
• “cognitive state” = state of the cognitive model
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Model Tracing
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Model Tracing

26

“buggy” rule

Cognitive 
Model

Observed 
Actions



Dario Salvucci, Drexel University.  Eye Movements & Programming 2015, November 23, 2015.

ACT Programming Tutor (Corbett et al.)
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ACT Programming Tutor (Corbett et al.)
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ACT Programming Tutor (Corbett et al.)
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Eye Movements & Tutoring (Gluck)
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Eye Movements & Tutoring (Gluck)
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Eye Movements & Tutoring (Gluck)

■ Eye movements helped to understand…
– Failure to read bug messages 
– Disambiguation of an error 
– Time off-task
– and more

■ Key:  Looking for “instructional opportunities” that 
would not be present without eye movements
– Human tutors can have a huge impact (e.g., raise a 

student 2 standard deviations from mean!)
– Computer tutors can manage about 1 standard deviation

• maybe measures like eye movements can help close the gap
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Intelligent Tutoring

■ So, there were models of programming built into 
these intelligent tutors

■ And there have been tutors that (sort of) use EMs
■ But interestingly…

– there are many tutors today (for 300,000+ students)
– but no (ACT-R) programming models since 1990s!
– tutors all based on 1990s cognitive architecture, with  

1 rule ≈ 1-5 seconds of action
• modeling behavior at a more strategic level

– modern architectures: 1 rule ≈ 50-250 ms of action
• good at predicting eye movements, but harder to build tutors at 

the strategic level
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Modeling & Programming

■ What lessons might we draw from ACT-R’s history 
of modeling, tutoring, and eye movements?
– Modeling the cognitive processes in programming is 

difficult, but can be done.
• the cognitive architecture can help guide representations and 

skill sets to those that are psychologically plausible

– There is sometimes a large leap from eye-movement 
patterns to cognitive strategies.
• Model Tracing is very relevant and may help here
• this is where the levels of abstraction come in…  

at what level are you most interested in learning about?

■ So how do we map eye movements to strategies 
in computer programming?
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Modeling & Programming

■ EMIP 2014 coding scheme

35

Patterns  (observable) 
Flicking
JumpControl
JustPassingThrough
LinearHorizontal
LinearVertical
RetraceDeclaration
RetraceReference
Scan, Signatures
Thrashing
Word(Pattern)-Matching

Strategies  (unobservable) 
AttentionToDetail
DataFlow
Debugging
Deductive
DesignAtOnce
FlowCycle
Inductive
Interprocedural-ControlFlow
Intraprocedural-ControlFlow
StrayGlance
TestHypothesis
Touchstone
Trial&Error
Wandering
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Modeling & Programming

■ Possible patterns/ 
low-level strategies:
– read everything 

(syntax checking?)
– read words 

(not punctuation)
– read method names,  

speak them out
■ Models have…

– ACT-R rules that specify the strategy
– ACT-R architecture that drive the underlying processes 

(e.g., visual attention shifts leading to eye movements)
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public	  class	  Rectangle	  {	  
private	  int	  x1	  ,	  y1	  ,	  x2	  ,	  y2	  ;	  
public	  Rectangle	  (	  int	  x1	  ,	  int	  y1	  ,	  int	  x2	  ,	  int	  y2	  )	  {	  	  

this.x1	  =	  x1	  ;	  
this.y1	  =	  y1	  ;	  
this.x2	  =	  x2	  ;	  
this.y2	  =	  y2	  ;	  

}	  
public	  int	  width	  (	  )	  {	  return	  this.x2	  –	  this.x1	  ;	  }	  
public	  int	  height	  (	  )	  {	  return	  this.y2	  –	  this.y1	  ;	  }	  
public	  double	  area	  (	  )	  {	  return	  this.width	  (	  )	  *	  this.height	  (	  )	  ;	  }	  
public	  staCc	  void	  main	  (	  String	  [	  ]	  args	  )	  {	  

Rectangle	  rect1	  =	  new	  Rectangle	  (	  0	  ,	  0	  ,	  10	  ,	  10	  )	  ;	  
System.out.println	  (	  rect1.area	  (	  )	  )	  ;	  
Rectangle	  rect2	  =	  new	  Rectangle	  (	  5	  ,	  5	  ,	  10	  ,	  10	  )	  ;	  
System.out.println	  (	  rect2.area	  (	  )	  )	  ;	  

}	  
}
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Conclusions

■ Eye movements help us understand cognition
– BUT they are not the only useful source of data,  

and are best viewed as complementary with other data
■ Cognition helps us understand eye movements

– BUT the hidden connection between the eyes and the 
mind will always make this a non-trivial process

■ Models help us understand both
– BUT there are many types of models — all of them are 

“wrong” :) but many of them are useful!
– plus, models can be used for engineering development of 

model-based systems (like tutoring systems)
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ACT-R Modeling

▪ If you’d like to see/run a working model,  
please download and extract… 

▪ Launch “ACT-R-prog.jar” 
then open “Program1.actr”  
and click “Run”:  

http://cog.cs.drexel.edu/emip15.zip
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ACT-R Modeling

▪ The canonical implementation is in LISP: 
– http://act-r.psy.cmu.edu 
– like many (most?) systems developed since the early 

years of AI, Cognitive Science 
▪ LISP is a cool language, but it’s often inconvenient 

– environments are uneven across platforms 
– task/interface development is more difficult 

▪ We will try an ACT-R system implemented in Java 
– actually, you don’t need to know Java at all to use it 

(ACT-R has its own language) 
– though you do need Java to program new tasks 

– your “ACT-R-prog.jar” has a programming task built-in
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ACT-R Modeling

Brain “Hardware”
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Model Overview

(set-‐task	  "prog.Programming")	  

(sgp	  
	  	  	  	  :emma	  t	  
	  	  	  	  :visual-‐num-‐finsts	  300	  
	  	  	  	  :visual-‐finst-‐span	  300	  
	  	  	  	  :visual-‐movement-‐tolerance	  1	  
	  	  	  	  :v	  t	  
)	  

(add-‐dm	  	  
	  	  	  	  (goal	  isa	  read)	  
)	  
(goal-‐focus	  goal)	  

(p	  read*find-‐line	  
…	  
)

Task Specification

Parameter Settings

Declarative Memory

Goal Specification

Production Rules
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Task Code

public	  class	  Programming	  extends	  actr.task.Task	  {	  
private	  String[]	  TEXT	  =	  {	  

"public	  class	  Rectangle	  {“,	  
"private	  int	  x1	  ,	  y1	  ,	  x2	  ,	  y2	  ;”,	  
…	  

};	  

public	  Programming()	  {	  …	  }	  

@Override	  
public	  void	  start()	  {	  

//	  draw	  TEXT	  on	  the	  screen	  using	  labels	  
processDisplay();	  	  //	  to	  register	  items	  with	  visual	  system	  

}	  
}
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Model Overview

(p	  read*find-‐line	  
	  	  	  	  =goal>	  
	  	  	  	  	  	  	  	  isa	  read	  
	  	  	  	  	  	  	  	  line	  nil	  
	  	  	  	  ?visual-‐location>	  
	  	  	  	  	  	  	  	  state	  free	  
	  	  	  	  	  	  	  	  -‐	  buffer	  requested	  
	  	  	  	  ?visual>	  
	  	  	  	  	  	  	  	  state	  free	  
	  	  	  	  	  	  	  	  buffer	  empty	  
==>	  
	  	  	  	  +visual-‐location>	  
	  	  	  	  	  	  	  	  isa	  visual-‐location	  
	  	  	  	  	  	  	  	  screen-‐y	  lowest	  
	  	  	  	  	  	  	  	  :attended	  nil	  
)

Define	  a	  production	  “read*find-‐line”	  
IF	  	  	  	  	  the	  goal…	  

is	  of	  type	  “read”	  
and	  the	  line	  is	  currently	  empty	  

and	  the	  visual-‐location	  status…	  
is	  free	  
with	  an	  empty	  buffer	  

and	  the	  visual	  status	  
is	  free	  
with	  an	  empty	  buffer	  

THEN	  
start	  a	  new	  visual-‐location	  process	  

for	  some	  visual	  location	  
at	  the	  lowest	  ‘y’	  coordinate	  
that	  has	  not	  yet	  been	  attended
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Model Overview

(p	  read*note-‐line	  
	  	  	  	  =goal>	  
	  	  	  	  	  	  	  	  isa	  read	  
	  	  	  	  	  	  	  	  line	  nil	  
	  	  	  	  =visual-‐location>	  
	  	  	  	  	  	  	  	  isa	  visual-‐location	  
	  	  	  	  	  	  	  	  screen-‐y	  =y	  
==>	  
	  	  	  	  =goal>	  
	  	  	  	  	  	  	  	  line	  =y	  
)

Define	  a	  production	  “read*note-‐line”	  
IF	  	  	  	  	  the	  goal…	  

is	  of	  type	  “read”	  
and	  the	  line	  is	  currently	  empty	  

and	  the	  visual-‐location	  contains	  a	  chunk…	  
of	  type	  visual-‐location	  
at	  a	  particular	  ‘y’	  coordinate	  (=y)	  

THEN	  
change	  the	  goal	  

to	  note	  the	  found	  ‘y’	  coordinate
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Model Overview

(p	  read*find-‐token	  
	  	  	  	  =goal>	  
	  	  	  	  	  	  	  	  isa	  read	  
	  	  	  	  	  	  	  	  line	  =y	  
	  	  	  	  ?visual-‐location>	  
	  	  	  	  	  	  	  	  state	  free	  
	  	  	  	  	  	  	  	  -‐	  buffer	  requested	  
	  	  	  	  ?visual>	  
	  	  	  	  	  	  	  	  state	  free	  
	  	  	  	  	  	  	  	  buffer	  empty	  
==>	  
	  	  	  	  =goal>	  
	  	  	  	  	  	  	  	  line	  =y	  
	  	  	  	  +visual-‐location>	  
	  	  	  	  	  	  	  	  isa	  visual-‐location	  
	  	  	  	  	  	  	  	  screen-‐y	  =y	  
	  	  	  	  	  	  	  	  screen-‐x	  lowest	  
	  	  	  	  	  	  	  	  :attended	  nil	  
)

(p	  read*encode-‐token	  
	  	  	  	  =goal>	  
	  	  	  	  	  	  	  	  isa	  read	  
	  	  	  	  	  	  	  	  line	  =y	  
	  	  	  	  =visual-‐location>	  
	  	  	  	  	  	  	  	  isa	  visual-‐location	  
	  	  	  	  ?visual>	  
	  	  	  	  	  	  	  	  state	  free	  
	  	  	  	  	  	  	  	  buffer	  empty	  
==>	  
	  	  	  	  +visual>	  
	  	  	  	  	  	  	  	  isa	  move-‐attention	  
	  	  	  	  	  	  	  	  screen-‐pos	  =visual-‐location	  
)

(p	  read*continue-‐line	  
	  	  	  	  =goal>	  
	  	  	  	  	  	  	  	  isa	  read	  
	  	  	  	  	  	  	  	  line	  =y	  
	  	  	  	  =visual>	  
	  	  	  	  	  	  	  	  value	  =text	  
==>	  
	  	  	  	  !output!	  (=text)	  
)	  

(p	  read*done-‐line	  
	  	  	  	  =goal>	  
	  	  	  	  	  	  	  	  isa	  read	  
	  	  	  	  	  	  	  	  line	  =y	  
	  	  	  	  ?visual-‐location>	  
	  	  	  	  	  	  	  	  state	  error	  
==>	  
	  	  	  	  =goal>	  
	  	  	  	  	  	  	  	  line	  nil	  
	  	  	  	  -‐visual-‐location>	  
)
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> (run)

    0.000   vision            unrequested [vision~63]
    0.000   procedural        start
    0.049   procedural        ** READ*NOTE-LINE **
    0.098   procedural        ** READ*FIND-TOKEN **
    0.098   vision            find-location [vision~66]
    0.147   procedural        ** READ*ENCODE-TOKEN **
    0.147   vision            move-attention
    0.168   vision            encoding-complete [word~69]
    0.217   procedural        ** READ*CONTINUE-LINE **
"public"
    0.266   procedural        ** READ*FIND-TOKEN **
    0.266   vision            find-location [vision~72]
    0.282   eye               preparation-complete [word~69]
    0.315   procedural        ** READ*ENCODE-TOKEN **
    0.315   vision            move-attention
    0.356   eye               execution-complete [word~69]
    0.370   vision            encoding-complete [word~75]
    0.419   procedural        ** READ*CONTINUE-LINE **
"class"

Simulation Run
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