
Eye Movements in Programming Education II:

Analyzing the Novice’s Gaze

Teresa Busjahn, Carsten Schulte,

Sascha Tamm, Roman Bednarik (Eds.)

TR-B-15-01
March 2015

Eye Movements in Programming Education II:

Analyzing the Novice's Gaze

Proceedings of the Second International Workshop

at the 9th WiPSCE Conference on Computing Education

Freie Universität Berlin, Germany

November 7th - November 8th, 2014

Welcome to the proceedings of the second workshop on “Eye Movements in Programming

Education: Analyzing the Novice's Gaze”.

Eye movement data yields rich information about source code reading. Observations of the visual be-
havior with an eye tracker can uncover programmer's visual attention in great detail. Unobtrusively
and without extra cognitive load, viewing activities that the programmers are not aware of or fail to
report for different reasons are captured. One of the challenges, however, lies in how to analyze the
data.

This is the second edition of workshops that aim to create a network of academic and industrial partic-
ipants with interest in various aspects of gaze in programming. The topics range from theoretical
through methodological to applied topics of gaze in programming. We started with a focus on ex-
perts’ gaze strategies during source code reading and developed a coding scheme to support analysis
of reading strategies. This time, the attention shifted to novices.

The workshop was conducted in conjunction with the 9th WiPSCE Conference on Computing Educa-
tion. It took place November 7th - 8th, 2014 at Freie Universität Berlin, Germany. A total of 21 people
from 10 countries participated, three of them remotely. The event was kindly supported by SensoMo-
toric Instruments.

Before the workshop, participants were asked to analyze gaze data of two novice programmers read-
ing Java and present their findings in a short position paper. The eye movement records came from a
weekly Java beginner's course offered at Freie Universität Berlin, in which participants individually
worked through an online course provided by Udacity (www.udacity.com/course/cs046). The begin-
ner's course consists of six lessons, which were covered over a period of circa three months. After each
lesson was completed, a recording was taken. For the workshop, we selected recordings correspond-
ing to begin of class, mid-term and end of class.
The two exemplary novices that were studied had scarcely any prior programming knowledge. Work-
shop participants could choose, whether they want to analyze one of the novices or both. The com-
plete dataset can be downloaded from www.emipws.org/datasets-2014/.

This technical report contains the position papers, workshop call, illustrations of the gaze data used,
and a list of participants.

We would like to thank all participants for their excellent work,

Teresa Busjahn, Carsten Schulte, Sascha Tamm and Roman Bednarik

3

Contents

Applying Cognitive Theories to Novice Programmers
Andrew Begel

5

An Exploratory Analysis of the Novice’s Gaze
Martin Löhnertz

10

Understanding a Novice Programmer’s Progression of Reading and Summarizing Source Code
Andrew Morgan, Bonita Sharif, Martha E. Crosby

13

Primary Investigation of Applying Hidden Markov Models for Eye Movements in Source Code Reading
Paul A. Orlov

18

Notes on Eye-Tracking Data from a Novice Programmer
James H. Paterson

21

Programming Code Reading Skills: Stages of Development Encountered in Eye-Tracking Data
Mareen Przybylla

24

How Novices Understand a Program?
Kshitij Sharma, Patrick Jermann, Pierre Dillenbourg

28

Eye Movements in Programming Education 2: Analysing the Novice’s Gaze
Simon

31

Analyzing the Novice’s Gaze in Program Comprehension
Jozef Tvarozek

34

Workshop call 36

Illustrations of gaze data 37

List of participants 41

4

Applying Cognitive Theories to Novice Programmers

Andrew Begel
Microsoft Research
Redmond, WA USA

andrew.begel@microsoft.com

ABSTRACT
Identifying the differences between novice and expert pro-
grammers has been a long-standing question in the episte-
mology and learning research area for decades. With the
advent of cheap eye tracking technology, experiments can
be undertaken to objectively explore these differences at
a much more fine-grained time-scale and with much larger
numbers of experimental subjects than ever before. In this
paper, we report on analyses of two novice computer science
students who were recorded comprehending source code at
three points in their first Java programming course. While
we were able to infer possible cognitive explanations for their
eye movement data, ultimately we did not have enough data
to assure ourselves of its correctness. We plan to develop a
cognitive model for program comprehension that combines
symbolic execution, cognitive models, and eye tracking, that
will hopefully be able to further progress the field in our
understanding of the cognitive changes that occur as a pro-
grammer gains expertise.

1. INTRODUCTION
There is a long research history of trying to ascertain qual-

ities that distinguish a novice software developer from an
expert. While no one would mistake a first-time student
learning Java programming with a software company em-
ployee having 15 years of Java application development ex-
perience, it has proven surprisingly difficult to objectively
identify attributes manifested in the programming task it-
self that can serve as a judge of expertise.

Since the 1970s, researchers have subjectively identified
several ways in which experts differ from novices. When
asked to explain what a program does, experts can quickly
spot the most salient parts of the program without having
to read through the rest of the code. The researchers the-
orize that experts can do this by recognizing schemas [11,
8], or templates representing common coding patterns, and
understand the purpose of those schemas without having to
carefully examine the code within [7]. Crosby and Stelovsky

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Eye Tracking for Programming Education II 2014 Berlin, Germany
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

confirmed this conjecture with eye tracking data of program-
mers looking at Pascal code [4].

When explaining what a block of code does, experts speak
about its function, rather than its low-level execution. Ex-
perts plan ahead, adapting and applying general problem-
solving skills to a given task (e.g. top-down [2] or bottom-
up [13]), and sometimes employ specialized skills intended
for more uncommon situations [10]. Brooks’ top-down, hy-
pothesis-driven plan uses the concept of beacons to link im-
mediate knowledge about the program with domain knowl-
edge in long-term memory. Beacons were theorized to be
significant words, concepts, lines, or schema in the program
text. Wiedenbeck showed that experts recall the lines con-
taining likely beacons more than those that do not con-
tain beacons with greater frequency than novices do [14].
Gellenbeck and Cook looked at various aspects that distin-
guish beacons from other parts of the program text, and
found that structural grouping, headers, and mnemonically-
defined identifiers improved the ability of programmers to
find important concepts in the code [5].

Letovsky elaborated further on Brooks’ top-down method
to explain the hypotheses generated by subjects as they read
the program. He found that subjects prompt themselves
with a question when they encounter a confusing part of the
code [9]. Subjects them come up with a possible answer
to the question and look around the code for confirmation
of their hypothesis. Once they have confirmed (or refuted)
their answer, the subject resumes his prior task. Letovsky
identified five kinds of inquiries: Why is the code written
this way?, How is the code’s goal accomplished?, What is
this variable or subroutine I am looking at?, Does the code
behave in the way I expect?, and Why does this code look
funny or not do what I expect?

Many early research protocols were fairly simple. Pro-
grammers were asked to read a block of code and explain
what it did. To make it more challenge, the code was taken
away from the subjects when they had to explain it, forcing
them to rely on their memory [3]. While this let researchers
explore simple comprehension questions, it did not help to
explain how subjects were performing the comprehension.
Later experiments added think aloud, in which the subject
was asked to verbalize his or her stream of consciousness
while working. This lets the experimenter understand what
the subject is consciously thinking about and can be quite
revealing about the process.

The introduction of eye tracking technology has led to the
promise of millisecond by millisecond data revealing where
the subject is looking during the comprehension task. This

5

offers two advantages: first, eye gaze location can be objec-
tively and non-intrusively measured without interfering with
the subject’s thought process; second, eye gaze can be used
as a proxy for attention, enabling researchers who develop
cognitive models for programming to understand how and
when information from the program can enters the subject’s
short term memory and can then be incorporated into the
subject’s growing understanding of the program.

2. WORKSHOP EXPERIMENT
In this workshop on eye gaze tracking for novice program-

mers, we have been asked to study and analyze eye gaze
data from two subjects (EU10 and DO21) at three points in
time during their attendance of an introductory Java pro-
gramming course. Both subjects have had minimal training
in programming in any programming language, and neither
had any training in Java. The subjects’ datasets come from
programs they had to understand in Lessons 1, 4, and 6 of
their Java course.

2.1 Video Analysis
In this section is a subjective description of what each sub-

ject looked at while performing their comprehension tasks.

1. Subject EU10

Lesson 1 The subject read the program in text order,
twice in a row. There were very few regressions or
pauses in the eye gaze playback.

Lesson 4 The subject first read the program in text
order, taking about 25 seconds to do so. Then, the sub-
ject starts to read the program to see what it does when
it runs. She starts at the body of the main() method,
and reads the first line that defines the ‘text’ local vari-
able. Then she jumps down to the last line containing
the print statement that references the ‘text’ variable.
Then, she switches to reading the program in depen-
dency order, starting at the fourth line, which assigns
a value to the ‘word’ variable. ‘word’ is assigned by
executing the substring method on the value of the
‘text’ variable. The subject refreshes her memory of
the value of the ‘text’ variable by going up to the first
line, where ‘text’ was defined. There, she reads the
string ‘Hello World!’. Then she goes down one line
to read the ‘positionW’ assignment statement, which
is used by the assignment to ‘word’. She ”executes”
the ‘indexOf’ method used to assign the value of the
position of the ‘W’ character in the ‘text’ string by
looking at each character of ‘Hello World!’ one let-
ter at a time from left to right. She appears to be
counting how many characters are there until the let-
ter ‘W’, finding out the value of the assignment to
‘positionW’. She then jumps to the third line, which
assigns ‘textLength’ a value of the length of the ‘text’
variable. She uses the same tactic, again, counting the
letters in ‘Hello World!’ one at a time to figure out its
length.

Next, she goes to the fourth line of the method with the
assignment to ‘word’ and executes that statement in
her head, which means she has to remember the val-
ues of ‘positionW’ and ‘textLength’ to calculate the
answer. This is my own inference, however. Alterna-
tively, she could have been expert enough to recognize

that the ‘substring’ method simply gets the final word
of ‘Hello World!’ by beginning at the position of the
‘W’ letter and going until the end.

Finally, she reads the last line of the method again
to evaluate the text.replace() method and come up
with the answer ‘Hello Sun’. She reads this line sev-
eral times. Then she appears to refresh her memory
of the antecedents, looking at the ‘positionW’ assign-
ment, then the ‘text’ assignment (to remember the
string), then the ‘textLength’ assignment, and then
the ‘word’ assignment on the fourth line. She goes
back to the ‘text’ assignment on the first line and ap-
pears to evaluate the ‘substring’ method again. She
drops back down to the last line, and reads it again.
She bounces back and forth between the assignment to
‘text’ and the ‘text.replace()’ function, and then looks
at each line of the main() method one more time, as if
validating her hypothesis about how this code should
be executed.

Again, she reads the assignment to ‘word’, looking at
the arguments to the method over and over again. She
goes back to the last line of the program, and bounces
between the first line and last line. Then she rereads
the ‘textLength’ assignment, the ‘word’ assignment,
and the final line one last time before answering the
question.

Her answer says that the code replaces ‘Word’ with
the string ‘Sun’. We posit that she is referring to
the variable ‘word,’ rather than a misspelled ‘World’.
Given this answer’s equivalence to the final statement
of the program, she could have given this answer with-
out understanding the program at all. She did exhibit
some understanding of the ‘java.lang.String’ methods
through her execution of the ‘indexOf’ and ‘length’
methods, but it is a mystery whether she used this
understanding in her answer.

Lesson 6 The subject begins by reading the signature
of the ‘printMethod’ method. She continues reading
in text order to read the first ‘for’ loop. However,
when she gets to the first use of the ‘numberOfRows’
variable, which happens to be the method’s parameter,
she jumps down to the printMethod() call site. She
identifies that the value passed in is the number 3,
and returns to the ‘numberOfRows’ method, where she
had left off. She continues to read slowly, and with
regressions, through the two nested ‘for’ loops.

She now begins to solve the problem. She jumps down
to re-read the ‘main’ method, and jumps up to re-read
the ‘for’ loops, paying attention to the print statements
that write a ∗ on the screen as each loop is executed. It
appears as though she is gazing only at a single point
on each line, as if she’s mentally executing the code,
her eyes signaling which line is attendant in mer mind
at one time.

Her answer to the problem is that there are ‘two for
loops for row and col,’ which indicates she did not
evaluate the code at all, but in fact, just described its
control structure.

2. Subject DO21

Lesson 1 DO21’s first assignment is in pseudo-code,
not Java. She starts reading the program in text or-

6

der, but stops on the first conditional statement. She
re-reads the first line which has the data the condi-
tional is testing. Then she goes back to where she left
off, reading the program in text order until the end.
Then she re-reads the first line with the data, goes
back to the conditional its consequent. Finally, she
goes to the second line of the program, reads the ‘for’
loop that surrounds the conditional. Then she reads
the conditional and finishes. She answers the question
correctly, using her own words, rather than explaining
the surface features of the pseudo-code.

Lesson 4 This assignment is in Java. DO21 reads
the code in text order until the second to last line
of the method body where two print statements are.
She reads the preceding two lines to see that the vari-
able ‘num2’ is fetched from the user and printed out.
Then she rereads the print statements again to discover
that two numbers are added together and divided by
two and assigned to the variable ‘average’. She goes
back up again above the variable ‘num2’ to see similar
code that fetches an integer from the user, assign it to
‘num1’, and print it out.

She appears confused at how the ‘num1’ and ‘num2’
variables are assigned. She looks at the call to in-
stantiate a new Scanner object. Then, she looks at
the import statement that pulls the ‘java.util.Scanner’
namespace into the program. She starts to read the
program in execution order, but only at a program
slice where the Scanner object is used. She repeats
herself again quickly.

Then she goes to the last line where the variable ‘aver-
age’ is printed out. She then goes back up to the lines
where ‘num1’ and ‘num2’ are assigned.

She may have memorized the calculation to compute
the average, or fetched it from her domain memory
(‘average’ is a common math term) because she did not
look at that line again before answering the question.
Her answer is correct, but indicates a surface-level ex-
planation of the code.

Lesson 6 DO21 reads the same code as subject EU10.
First, she reads the lines of the ‘printMethod’ method
in text order. Then she goes through the ‘for’ loops
slowly, reading them over and over again, with inter-
mittent jumps to read the value of the argument to the
‘printMethod’ because it is used in the outer ‘for’ loop.
She appears to be executing the ‘for’ loops completely.

Her answer indicates that the subject understands the
code and the purpose of its nested loops. In addition,
she writes the output of the program correctly.

2.2 Analysis Informed by Prior Research
Subject EU10 exhibited signs that she understood how

to execute Java code, but as Jeffries’ research suggested of
novices, her answers indicate she continues to have a low-
level literal understanding of the code [7]. Jeffries also sug-
gested that novices read code in text order. Both EU10
and DO21 did at the beginning, but as they progressed in
the course, they interrupted this book reading with just-in-
time inquiries about the code, as predicted by Letovsky [9].
This happens in Lesson 6, for Subject EU10. She asked a
‘What’ question about the ‘numberOfRows’ parameter to

the method she was looking at. DO21 appears to ask a
‘What’ inquiry in Lesson 1. I think DO21 is more advanced
than EU10 has been since the beginning of the course.

As proposed by Brooks [2] and elaborated by Wieden-
beck [14], beacons helped Subject DO21 decode the intent
of the computation to produce the average of the two num-
bers. I believe this because she barely looked at the compu-
tation to produce the average, but she was able to answer
the question correctly.

Aschwanden and Crosby showed in an eye tracking study
that people look longer (mean fixation time) at lines of code
that are important for program comprehension [1]. I calcu-
lated the average fixation duration for the most important
lines of each subject’s lesson in this study, and report them
in Table 1. These two study subjects never looked at the
important AOIs (words or groups of words) for longer than
the unimportant AOIs. That could indicate that they re-
main novice enough even by the end of the Java class to
pass for novices in Aschwanden and Crosby’s study.

2.3 Improving the Experiment
There is a large amount of inter-subject variation among

software programmers. This is especially true at the begin-
ning of one’s first programming course. It would help to
have many more samples of each lesson done by different
students in the course. In addition, I believe these two stu-
dents did not seem to change very much in the course. I
would like to see more repeated measures, i.e. where stu-
dents do the same problem type again later in the course
to see how they might have changed over time. This would
enable this author to be more certain of his results.

3. FUTURE ANALYSES
Inspired by the work of Shneiderman and Mayer, Green

et. al [12, 6, 13], and Rist developing cognitive models for
writing code, I plan to create a cognitive model to explain
program comprehension. A key aspect of this new model is
the combination of eye tracking, symbolic execution, and a
modern neurological understanding of cognition.

Symbolic execution is used in program analysis to under-
stand what state a program is in at any stage of execution.
As the analysis moves through the program, it builds up a
model of what the program has done. The models often in-
clude a heap (for the values of variables), a stack (to keep
track of function calls), a program counter (to keep track
of the current line being executed). Contained implicitly in
these models is a static heap to keep track of the definitions
of the code itself and the layout of code in memory.

Human cognitive understanding works differently than com-
puter understanding. Unlike a computer’s FILO stack and
random-access effectively infinite heap, a human’s memory
is multi-level and limited. It consists of a short-term mem-
ory store that can hold between 3 and 7 concepts for up
to 1 minute, and a long-term memory store that can hold
everything that is perceived to be important such as domain-
specific concepts, strategies, schemas, templates. Long term
memory also provides access to learned skills for planning,
debugging, testing, and reformulation. There are other kinds
of memory (e.g. spatial, prospective, associative, and episo-
dic) which we will put into future versions of our model.

We model short-term memory as a cache using a least-
recently-used replacement strategy. For example, as a per-
son reads through source code, the program’s variables and

7

Subject Lesson Most Important AOIs Top Important (ms) Top Actual (ms)

EU10
1a L3P3, L4P3-5 L4P3-5 (420) L2P8 (426)
4a L3-6P2, L3P4-5, L4P4,6, L5P4, L6P4,6,8-10, L7P3,5,7 L3P4,5 (423) L5P1 (468)
6 L2P7, L3P4-6,8-10,12,13, L4P4-6,8-10,12,13, L5P3 L5P3 (537) L10P1 (592)

DO21
1b L1P2,4,6, L2P3, L3P3-5, L4P2, L6P2 L1P4 (270) L2P2 (501)
4b L2P3, L5,7P2,4, L6,8P2, L6,8P4, L9P2,5-7,9,10, L10P3, L11P3 L11P3 (233) L6P6, L9P3 (283)
6 L2P7, L3P4-6,8-10,12,13, L4P4-6,8-10,12,13, L5P3 L3P12 (359) L10P8 (634)

Table 1: Highest average fixation duration for the Areas of Interest (AOIs) that were most important to the
program and the one the subject focused their eyes on. The author selected the most important AOIs based
on beacon theory, however, the highest average fixation duration always belonged to unimportant AOIs.

associated values enter his short-term memory. As more
source code is read and processed, older variables and val-
ues may get evicted from short-term memory prior to being
stored in long-term memory. When information is deemed
important enough, and is practiced repeatedly, it can get
stored in the effectively infinite long-term memory by con-
necting it to already-known domain knowledge.

In order to put information into short-term memory, a
person must pay attention to it. We use the eye gaze infor-
mation as a proxy for attention. When the person looks at
a line of code, our model places that line and its meaning
into short-term memory. As the person reads more lines of
code and fills up the short-term memory, previous lines are
evicted. If the person recognizes the signs (beacons) for a
coding schema already stored in his long-term memory, he
can replace several independent stored items with a single
reference to the relevant schema and reduce the load on his
short-term memory.

But, people read code in many different orders, including
text order (like a book), control flow order (as the program
executes), and data flow order (following some data values
forwards or backwards through the program, while ignor-
ing others). We use a symbolic execution engine to model
control and data dependencies between lines of code. In or-
der to understand the value of ‘z = a + b’, the engine must
evaluate previously executed lines containing assignments to
‘a’ and ‘b’. A correct program is written in an order that
ensures that dependencies are met before a line of code is
executed. A human, however, does not necessarily read code
in linear order, or control- or data-dependent orders. Thus
they might get to a line of code that they cannot under-
stand until they read the right line of code that precedes
it in control order. Humans do this easily and just-in-time
when comprehending code [9].

In our cognitive model, we modify our symbol execution
engine to model how a human understands code, given the
limitations he has on short-term memory and his predilec-
tion for reading code out of control flow order. When a
person reads too much code, information will fall out of
short-term memory. Thus, if our model predicts he will lack
knowledge of the value of a variable he must have to under-
stand the code, he will have to direct his eyes (attention)
back to the line of code that defines the variable’s value. If
the variable was found in the short-term memory, it would
be accessible without re-reading it.

This model expects a person to comprehend the source
code as well as a computer would. Thus, violations of this
model could indicate the degree of expertise of the human.
A novice may need to reread the same line of code several
times, even though it is in the short-term memory. An ex-

pert may be able to skip reading the definition of a piece of
code if he recognizes that the name and shape of the code
resembles a template he already has accessible in his long-
term memory.

I plan to build a prototype of this model by the time of
the workshop, and hope to discuss its design and validity
with other workshop participants.

4. REFERENCES
[1] C. Aschwanden and M. Crosby. Code scanning

patterns in program comprehension. In Symposium on
Skilled Human-Intelligent Agent Performance.
Measurement, Application and Symbiosis. Hawaii
International Conference on Systems Science, 2006.

[2] R. Brooks. Towards a theory of the comprehension of
computer programs. International Journal of
Man-Machine Studies, 18(6):543–554, June 1983.

[3] R. E. Brooks. Studying programmer behavior
experimentally: The problems of proper methodology.
Commun. ACM, 23(4):207–213, Apr. 1980.

[4] M. E. Crosby and J. Stelovsky. How do we read
algorithms? a case study. Computer, 23(1):24–35, Jan.
1990.

[5] E. M. Gellenbeck and C. R. Cook. Does signaling help
professional programmers read and understan d
computer programs? In J. Koenemann-Belliveau,
T. G. Moher, and S. Robertson, editors, Empirical
Studies of Programmers: Fourth Workshop. Ablex
Publishing Corp., Norwood, NJ, USA, 1994.

[6] T. R. G. Green, R. K. E. Bellamy, and M. Parker.
Parsing and gnisrap: A model of device use. In G. M.
Olson, S. Sheppard, and E. Soloway, editors, Empirical
Studies of Programmers: Second Workshop, pages
132–146. Ablex Publishing Corp., Norwood, NJ, USA,
1987.

[7] R. Jeffries. A comparison of the debugging behavior of
expert and novice programmers, 1982. Paper
presented at the meetings of the American Education
Research Association.

[8] W. L. Johnson and E. Soloway. Proust:
Knowledge-based program understanding. In
Proceedings of the 7th International Conference on
Software Engineering, ICSE ’84, pages 369–380,
Piscataway, NJ, USA, 1984. IEEE Press.

[9] S. Letovsky, J. Pinto, R. Lampert, and E. Soloway. A
cognitive analysis of a code inspection. In G. M.
Olson, S. Sheppard, and E. Soloway, editors, Empirical
Studies of Programmers: Second Workshop, pages
231–247. Ablex Publishing Corp., Norwood, NJ, USA,
1987.

8

[10] M. Linn and J. Dalbey. Cognitive consequences of
programming instruction. In E. Soloway and J. C.
Spohrer, editors, Empirical Studies of Programmers,
pages 57–81. Lawrence Erlbaum, Hillsdale, NJ, USA,
1984.

[11] C. Rich. A formal representation for plans in the
programmer’s apprentice. In Proceedings of the 7th
International Joint Conference on Artificial
Intelligence - Volume 2, IJCAI’81, pages 1044–1052,
San Francisco, CA, USA, 1981. Morgan Kaufmann
Publishers Inc.

[12] R. S. Rist. Program structure and design. Cognitive
Science, 19(4):507–562, 1995.

[13] B. Shneiderman and R. Mayer. Syntactic/semantic
interactions in programmer behavior: A model and
experimental results. International Journal of
Computer and Information Sciences, 8(3), 1979.

[14] S. Wiedenbeck and J. Scholtz. Beacons: A knowledge
structure in program comprehension. In G. Salvendy
and M. J. Smith, editors, Designing and Using
Human-Computer Interfaces and Knowledge-Based
Systems, pages 82–87. Elsevier, Amsterdam, The
Netherlands, 1989.

9

An Exploratory Analysis of the Novice’s Gaze

A Position Paper for the International Workshop on Eye Movements in

Programming Education at WIPSCE14

Martin Löhnertz
Faculty IV/Computer Science

University of Trier
D-54269 Trier, Germany
loehnert@uni-trier.de

ABSTRACT

We analyse three sets of eye tracking data obtained from
a novice’s attempt to understand program code examples.
We apply interpretation guided pattern segmentation and
statistical methods to relate the given data to similar inves-
tigations from literature and previous workshops.

Categories and Subject Descriptors

K3.2 [Computers and education]: Computer and In-
formation Science Education—computer science education;
D.2.5 [Testing and Debugging]: Code inspection and
walk-throughs—reading code

Keywords

code inspection, eye-tracking

1. INTRODUCTION
For an introduction to the general setting and the datasets

(numbered 1,4 and 6) we refer to the preface of the volume.
When analysing human behaviour two approaches rival

each other. On the one side is the inductive scientific ap-
proach that tries to eliminate all subjective factors and thus
concentrates on - ideally numerically - measurable observa-
tions. While yielding indisputable statements these tech-
niques often fail to produce any results in educational con-
texts as the number of independent parameters frequently
is overwhelming and the sample sizes from sets of homoge-
neous observable objects mostly are small.
On the other side is the interpretative approach which as-
sumes and accepts testees and observers to be uniformly
humans and to share a common system of intentions, meth-
ods and adapted social or mental constructs, that allows
the observer to relate his observations to his own behavioral
patterns. While this allows to create conclusions based on
very small sets of data it is prone to individual abberations,
cultural barriers (e.g. in this context: reading directions)
and misattributions. These can be averaged by increasing
the number of human observers like it is attempted by the
current workshop.
We will exemplarily apply methods from both paradigms.
On the one hand we present our own (speculative) inter-
pretation of the data and try to objectify this by applying
schemes developed in a previous workshop. On the other
hand we attempt some basic statistical analysis relating to
established hypotheses of code reading behaviour.

2. SPECULATIVE DESCRIPTION OF THE

TRACKING DATA
According to the questionnaire provided testee ”DO21“ is

a native french1 speaker with two years of programming ex-
perience in C++ but still low programming expertise due to
very infrequent exposition to programming tasks (less than
one hour per month). Her medium level competence in en-
glish (self-rated) probably was supportive when reading en-
glish variable names and program constructs on all three
difficulty levels.

The first (pseudo-)code example tested is basically an en-
glish sentence formatted into a program-like structure. It
comprises a loop and a simple fork. The testee reads it
sequentially until an application of ”cake price“ is reached,
then carefully re-reads the specification of ”cake prices“ in
line 1 followed by a linear read of the whole program and
two re-reads of the beginning with some regressions.

The second example presents JAVA-code with a completely
sequential program structure, so from an algorithmic point
of view it is simpler than the first probe. The data pre-
sented contains several eye movements leaving the code to
coordinates (15,0). We considered these measurement errors
- possibly blinking, although the used SMI RED-M device
appears to support ”blink recovery“ what would imply some
”blink detection“. Random disturbances of the reading pro-
cess should normally not result in exactly identical values,
thus we ignored them. As the class name describes its func-
tion - creating a bias towards ”expectation based compre-
hension“[5] - we suppose the program was understood after
the first linear read. The testee then tries to understand the
JAVA-scanner class and how it is used for input, followed by
a short re-verification of the general function at the end.

The third example is strictly more difficult than the sec-
ond one, but again contains no execution forks. It comprises
a function call and two nested loops, where the number of
iterations of the inner loop depends on the state of the outer.
Again several offscreen events have to be eliminated. The
testee starts reading top down and needs significant time
before identifying the ”main“ routine and even more before
trying to match actual and formal parameters. The follow-
ing large number of recessions between the two loop con-
structs on the other hand is enforced by their nesting and
not necessarily an indicator of difficulties. For this example
we found it astonishing that the testee was able to actually

1Which has significantly higher redundancy than english [3].

10

Table 1: Analysis of example 1
Event # Pattern Strategy

1-8 LinearVertical DesignAtOnce
9-20 RetraceDeclaration ?
20-33 LinearVertical DesignAtOnce
33 Recession FlowCycle
33-49 Flickering FlowCycle

Table 2: Analysis of example 4
Event # Pattern Strategy

1-11 Flicking none
11-86 Scan DesignAtOnce
87-127 Flicking FlowCycle
127-235 WordMatching AttentionToDetail
236-266 Scan TestHypothesis

”solve“ the problem by predicting the output. We would ex-
pect more prominent fixations on the critical ”col <= row“
part in the case of real understanding.

3. PATTERNS AND STRATEGIES
Preceding this workshop focusing on the ”novice“ pro-

grammer a workshop on the ”expert’s view“ was held in
2013 [1]. There a set of movement patterns and interpre-
tation strategies was collected (pp. 36-41), which we will
try to apply to the new data. Most of these patterns and
strategies have self explanatory names with the following
exceptions: ”JumpControl“ means the following of the ex-
ecution order; ”WordMatching“ is described as visual pat-

tern matching which we assume to mean jumping between
lexically identical objects, ”DesignAtOnce“ means a scan to
understand the general idea, and ”FlowCycle“ denotes the
repeated intensifying reread of some part.
When analysing example 1 (Table 1) we noted that the

usage term ”retrace declaration” is somewhat JAVA specific
as there is no distinction between declaration and definition
which is crucial to other programming languages.
As the code in example 4 (Table 2) is completely se-

quential no differentiation between ”JumpControl“ and ”Lin-
earVertical“ is possible. Most prominent appears the inspec-
tion of parts related to the class ”Scanner“ from event 127 to
235 which we classified ”WordMatching“ as the testee also
revisited the ”import“ statement.
Example 6 (Table 3) starts getting interesting at event

224 when the testee identifies the main program and starts
tracing the data-flow. Understanding of the code has prob-
ably happened between events 264 and 310.
We found it quite difficult to classify the examples avail-

able by the schemes developed for the ”experts-view”, as
these expert strategies are seemingly not fully available to
the testee, even at the last test. Many parts, that we clas-
sified ”LinearVertical“ would be better described as “linear
vertical with some recessions”. To describe the novices at-
tempts we would like a finer differentiation of regression pat-
terns. Alternatively one could refine the time resolution and
split it into ”linear vertical”and ”recession phases”, but these
were very short - in time and length - and often appeared to
be related more to general reading processes than to actual
program evaluation.

Table 3: Analysis of example 6
Event # Pattern Strategy

1-30 Flickering none
30-106 Flickering DesignAtOnce
107-116 LinearVertical DesignAtOnce
117-129 Flickering Wandering
130-138 Flickering DesignAtOnce
138-144 LinearHorizontal AttentionToDetail
144-162 Scan DesignAtOnce
163-165 LinearVerical AttentionToDetail
165-171 LinearHorizontal AttentionToDetail
171-177 Flickering Wandering
177-183 LinearHorizontal AttentionToDetail
183-195 Flickering AttentionToDetail
196-201 LinearHorizontal AttentionToDetail
201-223 Flickering AttentionToDetail
224 RetraceDeclaration DataFlow
225-226 JumpControl AttentionToDetail
227-234 Flickering AttentionToDetail
234-263 Flickering TestHypothesis
234-263 Flickering TestHypothesis
264-310 Flickering Data Flow
340-342 LinearHorizontal AttentionTodetail
343-399 Flickering TestHypothesis

On the interpretation level discernable important events
like ”testee has found main program“ should get more atten-
tion and should be used for a stateful model of the testees
knowledge. After a fixed value ”3“ has become available in
example 6, the testee proceeded significantlymore efficiently.
This is directly related to the level of abstraction needed in
tight analogy to Piaget’s levels of individual cognitive devel-
opment [4].

4. STATISTICAL OBSERVATIONS
To gain a broader view of the field we tried to relate to the

established concept of beacon orientation [2]. Beacons are
code snippets prominently relevant to the overall structure
of a program and are assumed to be used as ”jump targets”
during reading. Assuming that actively using beacons will
result in an increased amount of relatively wider jumps ”from
beacon to beacon“ we counted the number of ”large jumps“
for quantitative different definitions of ”large“, depending
on the length relative to the maximum jump length. As
depicted by figure 1 no such tendency can be observed for
any definition. The even relatively larger jumps in the first
probe might by related to the increased size of the individual
points of interest due to their representation by full words.

Another possible consequence of the beacon theory would
be a relative reduction of short fixations, as the number of
ineffective fixations should decrease. As depicted by Figure
2, this can be observed for the development from example
4 to example 6. But quite contrary to that the relative
distribution for example 1 tends even more towards longer
fixations. Again we conjecture that this is caused by the
pseudocode style of the first example.

11

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

fixations in range x− 10 % to x % of maximum

%
o
f
to
ta
l
fi
x
a
ti
o
n
s Data1

Data4

Data6

Figure 2: Percentage of fixations by duration relative to maximum

0 20 40 60 80 100
0

20

40

60

80

100

% of maximum to define long

%
o
f
lo
n
g
ju
m
p
s

Data1

Data4

Data6

Figure 1: Percentage of long jumps depending on
definition of long jump

5. DISCUSSION
A major problem of the data provided is that two param-

eters have been changed simultaneously: The skill of the
student and the difficulty of the problem. It would be in-
teresting to see the advanced student’s performance on a
simple program. The data from the first lesson probably is
not suited to be compared to the other two due to the miss-
ing distinguation between structural and coding (i.e. JAVA)
induced complexity. Furthermore it could be worthwhile to
compare these traces with data from unsucessful reading at-
tempts.
Amore crucial question is how to create“operative”knowl-

edge from these observations. In other eye-movement anal-
ysis contexts, e.g. marketing, there where obvious conse-
quences to the results considering placement of images etc.
While collecting more knowledge on student behaviour is a
valid endeavour in itself some reflection what kind of knowl-
edge will be useful in teaching practice should guide the
procedure. E.g. a focus on comparing reactions to graph-
ically or syntactically different representations of the same
algorithm could provide applicable advices. Otherwise eye-
tracking might just lead to tautologic results like ”difficult
algorithms are difficult to read“.

6. REFERENCES
[1] R. Bednarik, T. Busjahn, and C. Schulte, editors. Eye

Movements in Programming Education: Analyzing the

Expert’s Gaze: Proceedings of the First International

Workshop, volume 18 of Publications of the University

of Eastern Finland. Reports and Studies in Forestry

and Natural Sciences, 2014.

[2] M. E.Crosby, J. Scholtz, and S. Wiedenbeck. The roles
beacons play in comprehension for novice and expert
programmers. In Proc. PPIG 14, pages 84–89. Brunel
University, June 2002.

[3] F. Pellegrino, C. Coupe, and E. Marsico. A
cross-language perspective on speech information rate.
Language, 87(3):539–558, 2011.

[4] J. Piaget. La naissance de intélligence chez l’enfant.
Delachaux et Niestlé, Neufchâtel, 1959.

[5] C. Schulte, T. Busjahn, and E. Kropp. Developing
coding schemes for program comprehension using eye
movements. In Proceedings of 25th Annual Psychology

of Programming Interest Group Annual Conference,
pages 84–89. University of Sussex, June 2014.

12

Understanding a Novice Programmer’s Progression of
Reading and Summarizing Source Code

Andrew Morgan
Software Engineering

Research and Empirical
Studies Lab

Department of Computer
Science and Information

Systems
Youngstown State University

Youngstown, Ohio 44555 USA
asmorgan@student.ysu.edu

Bonita Sharif
Software Engineering

Research and Empirical
Studies Lab

Department of Computer
Science and Information

Systems
Youngstown State University

Youngstown, Ohio 44555 USA
bsharif@ysu.edu

Martha E. Crosby
Department of Information and

Computer Sciences
University of Hawaii at Manoa
Honolulu, Hawaii 96822 USA

crosby@hawaii.edu

ABSTRACT
The paper presents observations over the course of three
months on the patterns and strategies a novice programmer
(DO 21) uses while reading source code. The programmer
was asked to read and summarize a program after complet-
ing three sets of lessons from an online course. Results indi-
cate that the method of reading source code gets harder as
the novice attempts to comprehend more difficult concepts.
The analysis is presented in the form of a case study.

Keywords
eye tracking, source code reading, program comprehension
strategies, computer science education

1. INTRODUCTION
Most universities teach students to start writing code early

in introductory programming classes, without teaching them
to read the code for understanding first. The task of com-
prehending code and the process used to teach students this
core skill is at least as important as the task of writing code.
In order to understand the process of reading and under-
standing code, a team of researchers from Freie Universitat
Berlin and the University of Eastern Finland organized the
first workshop on analyzing the expert’s gaze held in Fin-
land in November 2013. This year, the focus of the Koli
workshop is on analyzing gazes of novice programmers.

2. METHOD OVERVIEW
A brief description about the method and study is now

given. All participants of the workshop were granted ac-
cess to three eye tracking sessions (data, visualizations, and
videos) of one novice. Each of the eye tracking sessions were
held after the novice completed certain lessons (namely les-
son 1, lesson 4, and lesson 6) from an online Introduction to
Java Programming Udacity course1. The novice was asked
to study the program for as long as they wished and then
provide a summary. The novice is referred to as DO21 in

1https://www.udacity.com/course/cs046

the paper. An optional data set for another novice named
EU10 was later provided, but was not mandatory for anal-
ysis. The novices were both female and didn’t have much
experience programming. Workshop participants were urged
to describe the data in terms of stages of development and
asked for general thoughts on how this type of data could
be analyzed. The eye tracking sessions were conducted on
May 5th, June 16th, and July 14th of 2014 respectively.

3. OUR PREDICTION
Before we had a chance to look at the data, we were asked

about what we expect to find in the reading behavior and
also what ideas we had on the progress that could be per-
ceived. Our predictions follow. If the student has been
progressing well through the course, we would expect to
see the student getting better at comprehending the source
code given and becoming more efficient within their anal-
ysis. The reading behavior should get more structured as
the student progresses through the course. This more struc-
tured approach is further clarified as the individually unique
technique the programmer uses to understand the presented
source code. The approach, along the way, will become more
structured as the programmer understands his or her own
techniques to interpreting such code. This reading behavior
should also then focus on the important parts of the code.
What is important will vary based on what the task is. For
example, a bug finding task would involve different reading
behaviors compared to a task that just tells the subject to
look over the code and give an overview. At the time of
this prediction, we were not aware of the task (summariza-
tion) in this case. We also predicted that they might find
the answer quicker after lesson 6 when compared to the one
after lesson 1. Every programmer has a different workflow
they follow, however given enough subjects, there should be
some commonality that can be extracted. So how do we
measure progress? We could record time to complete task
as one example. Depending on how long these files are, we
could possibility also segment them into intervals and com-
pare them.

4. ANALYSIS
We now present our analysis of each of the three eye track-

ing sessions namely lesson 1, lesson 4, and lesson 6. These

13

Figure 1: Fixations, Durations, and Nodes per line
for Lesson 1 (pseudocode)

lessons are named after the last lesson the novice did online.
For each of the lessons, we present a graph outlining the
number of fixations, total duration, and nodes per source
line and provide some discussion about them. Note that
even though a line graph is used to show duration and nodes
per line, there is no implicit connection between duration or
nodes. The novice DO21 also provided an accurate sum-
mary (the main task considered for this workshop) after she
read through all the code in each lesson.

4.1 Lesson 1 Analysis
The first lesson’s recording was taken after the novice had

six days of online lessons. The six line program was written
in pseudo code and contained a for loop with an embedded
“if - else” statement. The novice seemed to read the code
as though it were text. Lines 1 and 3 received the most
fixations and also contained the most nodes. We refer to a
node as an area of interest in the data files. For example,
a node could be individual words and phrases contained in
a statement. See Figure 1. We did not see any continual
regressions, however, we noticed that she read the entire
program twice. In this particular case, the time spent read-
ing the lines correlated with the number of fixations on those
lines (which is not always the case). This type of behavior
is very similar to what we would expect of reading text in
a natural language. We also noticed that there were 4 fixa-
tions totaling 961 ms that did not fall on any given line in
the source code.

4.2 Lesson 4 Analysis
After lesson 1, the novice learned about objects and classes.

The eye-tracking recording for lesson 4 was done 42 days
after the recording for lesson 1. Refer to Figure 2. This
source code snippet contained a Scanner object in which in-
put was saved and later used for showing the average on
the screen. The program was 11 lines long (we excluded the
last two lines with braces since no fixations were detected
in that area). The last two lines were mainly brackets so
it could be that the subject perceived with peripheral vi-
sion that the brackets were there or could have also taken
for granted that the program was bug free with no need to
check for braces. It is also possible that the student might
have already learned that the braces were of little impor-
tance. Most of the fixations focused on lines 4, 5, 6, and
9. Line 4 created the Scanner object. Lines 5 and 6 read

Figure 2: Fixations, Durations, and Nodes per line
for Lesson 4 (CalculateAverage)

Figure 3: Fixations, Durations, and Nodes per line
for Lesson 6 (PrintPattern)

in an integer and line 9 did the averaging of two numbers.
If we compare the behavior of this subject with Lesson 1,
it appears that this task was more difficult for her to solve.
As DO21 tries to understand the code and build a mental
model, she checks areas previously read. She reads through
the program twice, i.e. we find two epics, from beginning
to end. Between these two epics, we observed some sort of
searching behavior. There were some regressions during the
searching phase, where things were not looked at sequen-
tially. The number of nodes, fixations and duration do not
correlate in any particular way. In this lesson, there were 72
fixations (10,724 ms) that did not fall on any given line in
the code.

4.3 Lesson 6 Analysis
This lesson was recorded 29 days after Lesson 4. During

this time, they covered decisions and loops. The source code
contained a method called from within the main function.
There was a nested for loop that printed stars in three rows
with each row having one additional star than the previous.
Refer to Figure 3. A lot of time is spent reading through
the nested for loop in the method. Line 3 was the line most
focused on, followed by line 4 and line 2 (method signature).
DO21 spent nearly half a minute on line 3 throughout the
session, which was the first for loop in the nested for con-
struct. The total time spent in the method body was around
47 seconds (47,496 ms, 202 fixations) with about 9 seconds
spent on the method signature (8,956 ms, 51 fixations), the
third most looked at line in the program.

In this session, we counted about 7 epics (times DO21
went through the program from beginning to end). The

14

first time the novice read this program, the first focus was
on lines 2 through 4 to understand what the method was
doing. Later, the programmer proceeded to look at the main
method. However, most of the gazes were focused on the
method declaration’s body. There was very little searching
behavior and a lot more continual regressions between the
lines in the nested for loop indicating a higher cognitive load
because of higher task difficulty. In this lesson, there were
95 fixations totaling 12,503 ms that did not fall on any given
line in the code.

4.4 Internal Testing for Further Analysis
A brief overview of the Java topics was introduced to a

local novice programmer at Youngstown State University
(Y10). In order to fully understand such data, the same
tests were performed on this participant for each of the five
source code snippets (combination of DO21’s and EU10’s).
All regulations were similar to those for the workshop, and
the programmer answered correctly to all summaries of the
code. The only difference is that we conducted this small
experiment all in one sitting.

When we compare Y10’s eye gaze fixations to the two
earlier subjects, we do see similar correlations. Y10’s data
had a tendency to experience Lesson 1 with a reading type
behavior, while other lessons followed with a more problem
solving type path with longer fixations and more focus on
specific statements to understand meaning. Y10 answered
all the summary questions correctly, however he took much
longer time in terms of fixation duration for interpreting
such code. In comparison, Y10 took up to two times the du-
ration compared to DO21, and up to four times the duration
as EU10.

5. STAGES OF DEVELOPMENT
Several studies describe the process of program compre-

hension but the evidence of how and why programmers per-
ceive code is limited. Most studies explain how not why
people read and comprehend programs. In the process of
establishing a methodology for studying program compre-
hension, Weissman [25] found that initially students encoun-
tered problems with constructs of the programming lan-
guage but eventually they were able to extract the programs
meaning. By systematically investigating the effect on pro-
gram comprehension of interactions between knowledge of
the gist, features of the text and participant differences,
it may be possible to determine when paradigm shifts (or
stages as suggested by Flavell [7]) emerge.

Research suggests that stage shifts occur as novices be-
come experts. Adelson [1] shows experts rely on abstract
problem descriptions to understand code using semantics
while novices are driven more by syntax and other catego-
rization strategies. Davies [6], Gilmore and Green [8], Green
and Navarro [10], Rist [18], Soloway and Ehrlich [21] and
Bertholf and Scholtz, [3] argue that experienced program-
mers use programming plans during the comprehension pro-
cess. Little is known about the progression of the processes
involved as novices become experts. Evidence suggests that
some people are more skilled than others, independent of the
number of years programming [11]. However, the underlying
reasons remain elusive.

Program comprehension has been described as 1) top-
down by Brooks [4]; 2) bottom-up by Basili and Mills [2];
Shneiderman and Mayer) [20]; 3) knowledge based by Letovsky

and Soloway [12], 4) as-needed by Littman et al. [13] and
Soloway et al. [22]; 5) control-flow based by Green [9],
Navarro-Prieto [14] and Pennington [15] and 6) integrated by
von Mayrhauser [24]. Research by Clayton, et al. [5]. Shaft
and Vessey [19] and von Mayrhauser and Vans [23] indicates
the top-down approach is used to scan through source code.
While bottom-up is used if people are unfamiliar with a par-
ticular application domain. While the integrated model of
program comprehension is compelling, there is not clear ev-
idence to support this model.

Application domain knowledge has been shown beneficial
for program comprehension. People that are familiar with
a domain tend to understand programs better than people
that are not familiar with the domain [17]. Pennington [15],
Petre et al. [16] and Navarro et al. [14] studied the mental
representations used during program comprehension. Their
studies present a model of how people build a mental im-
age when trying to understand code. However, it is difficult
to extract meaning from scan patterns alone. How do they
relate to other studies that focus on models of program com-
prehension? Can scan patterns be classified in a meaningful
way to clarify stages of comprehension? Comparing the scan
patters of participants who understand the programs gist
versus participants who do not may give insight into when
paradigm shifts or stages occur.

6. SUGGESTIONS
One method of determining a novice’s progression would

be to show them source code that was similar to lesson 1
at lesson 4 and lesson 6. Similarly, it is necessary to show
them source code similar to lesson 4 at lesson 6 in time. We
can then see the learning that has occurred of the concepts
learned at earlier sessions. Since this was not done in this
study, we are not able to say for sure, but only guess as to
what learning occurred. Another point is to design tasks
that take advantage of the kind of mental structure they
use to solve the problem. This can bring out the problem
solving nature of the task that these programs analyzed did
not have, even though they were semantically rich in syntax.

Regarding what points in time need to be examined more
closely, the answer will really depend on what we are trying
to determine. If our goal is to find stages in development
then it is going to take a longer time to follow the person
and have the person be their own control. This will help
us determine when the novice actually exhibits expert like
behavior (if ever) and this is the point at which we can
say that the novice has started using ”chunks” for example
and behaves more like an expert. For example, we could
determine if the novice has now started building hierarchical
tree like representations to solve the task or if they still focus
on a flattened out tree with no clue as to which path to take.
This change of representation needs to come through with a
good selection of tasks.

To fully understand the kind of data presented here re-
quires multiple levels of analysis. The videos and fixation
graphs by time do help. One thing that is also important
is time spent at each fixation. The big circles are indica-
tive of the task getting harder. Sometimes there could be
a few fixations but a lot of time spent on them. Points of
dis-connectivity in the fixation time line graphs also need
to be examined (could imply cognitive load or thinking and
reasoning).

We did not numerically analyze the additional EU10 dataset

15

since the programs used are syntactically and semantically
a lot different at lesson 1 and lesson 4 compared to DO21.
It would not be appropriate to compare them side by side.
Even though the same program was used for lesson 6, EU10
did not summarize the code correctly, so we only provided
a brief visual comparison.

7. DISCUSSION AND CONCLUSIONS
We predicted initially even before we saw the eye track-

ing sessions that the reading would become more struc-
tured. Reading pseudocode was more like a reading task,
which in turn required two linear epics within, to under-
stand. Whereas, the other two were also classified as reading
but it was getting harder for DO21 to read the more complex
constructs. DO21 did provide all correct summaries to the
programs. The fact that the reading got more difficult can
be seen in the data and videos of the sessions. It could be
that the keywords used and structure of the program caused
this to occur. Unfamiliarity with the methods can also cause
this to happen.

We also noticed a lot of fixations that fell either on blank
space on the screen or outside the screen (where the novice
looked at something other than the computer screen). They
may also have closed their eyes briefly to think about the
task at hand. In the timeline graphs provided, these out-of-
screen or out-of-line fixations can be seen as breaks in the
line graphs. These breaks mainly occur during the searching
that happens between the epics.

In visual comparison between Lesson 6 tests’ between DO21
and EU10, we can again see the apparent time difference be-
tween the two. While DO21 appears to interpret presented
code in a problem solving form, EU10 performs fewer epics
on the code itself, along with spending less duration on the
nested for-loop. The fixations for EU10 scattered the length
of the code, compared to focusing such cognitive load on the
main construct of the program. In return, the summariza-
tion of the code was answered incorrectly due to insufficient
understanding within the for loop itself.

We were not able to identify clearly any stages in the
videos or data. One might argue that each of the videos
could be split into three phases where they first read the
program and recognized it, followed by analyzing in detail,
followed by a conclusive stage. However, this is not apparent
while viewing the videos closely or looking at the numbers.
It is too early in the learning process of a difficult skill to find
such stages. It is unclear if they are chunking, for example.
Stages are a profound shift in understanding and we didn’t
see this in the sessions presented.

Another possibility is to distinguish problem solving from
reading. It might also appear that the novice is doing some
form of problem solving in lesson 4 and lesson 6. Lesson
1 appears to be a reading task. However, in order for the
problem solving theory to hold, they had to be working on
a different type of task. Problem solving is a major research
area in cognitive science. In programming, problem solving
is a key skill. However, we do not believe the programs trig-
gered any problem solving type of behavior. The task rep-
resented does not lend itself well to solving a problem where
the participant requires to build and change their mental
representation. In addition, eye movements alone cannot be
used to show this. So we conclude that the novice DO21 is
really in the process of reading and understanding the code
in all lessons but due to the nature of the constructs used,

things are getting harder to read. Do things get easier as
time goes on? We didn’t see it yet but it might in the longer
future. This is when stages in behavior might become more
apparent.

8. REFERENCES
[1] B. Adelson. Structure and Strategy in the

Semantically-Rich Domains. PhD thesis, 1983.

[2] V. R. Basili and H. D. Mills. Understanding and
documenting programs. IEEE Trans. Software Eng,
18:270–283, 1982.

[3] S. J. Bertholf, C. F. Program comprehension of literate
programs by novice programmers. Empirical Studies
of Programmers: Fifth Workshop, page 222, 1993.

[4] R. Brooks. Towards a theory of the comprehension of
computer programs. International Journal of
Man-Machine Studies, 18:543–554, 1983.

[5] R. Clayton, S. Rugaber, and L. Wills. On the
knowledge required to understand a program. Working
Conference on Reverse Engineering, 1998.

[6] S. P. Davies. The nature and development of
programming plans. International Journal of
Man-Machine Studies, 32:461–481, 1990.

[7] J. H. Flavell. Stage-related properties of cognitive
development. Cognitive Psychology, 2:421–453.

[8] D. J. Gilmore and T. R. G. Green. Programming plans
and programming expertise, the quarterly. Journal of
Experimental Psychology, 40A(3):423–442, 1988.

[9] T. R. G. Green. Cognitive approaches to software
comprehension: results, gaps and limitations.
Extended abstract of talk at workshop on Experimental
Psychology in Software Comprehension Studies 97,
1997.

[10] T. R. G. Green and R. Navarro. Programming plans,
imagery, and visual programming. In Nordby, K.,
Helmersen, P. H., Gilmore, D. J., Arnesen, S. (Eds.)
INTERACT-95, pages 139–144, 1995.

[11] A. J. Ko and B. Uttl. Individual differences in program
comprehension strategies in unfamiliar programming
systems. 11th IEEE International Workshop on
Program Comprehension (IWPC’03), 2003.

[12] S. Letovsky and E. Soloway. Delocalized plans and
program comprehension. IEEE Software, pages 41–49,
1986.

[13] D. C. Littman, J. Pinto, S. Letovsky, and E. Soloway.
Mental models and software maintenance. J. Syst.
Softw., 7(4):341–355, Dec. 1987.

[14] R. Navarro-Prieto. Mental representation and imagery
in program comprehension. Psychology of
Programming Interest Group, 11th Annual Workshop.,
1999.

[15] N. Pennington. Stimulus structures and mental
representations in expert comprehension of computer
programs. Cognitive Psychology, pages 295–341, 1987.

[16] B. A. F. Petre, Marian. Mental imagery in program
design and visual programming. International Journal
of Human-Computer Studies, pages 7– 30, 1999.

[17] V. Ramalingam and S. Wiedenbeck. An empirical
study of novice program comprehension in the
imperative and object-oriented styles. 7th Workshop
on Empirical Studies of Programmers, 1997.

16

[18] R. S. Rist. Plans in programming: Definition,
demonstration and development. In E. Soloway and S.
Iyengar (Eds.), Empirical Studies of Programmers,
1986.

[19] T. M. Shaft and I. Vessey. The relevance of
application domain knowledge: The case of computer
program comprehension. Information Systems
Research, 6:286–299, 1995.

[20] B. Shneiderman and R. Mayer. Syntactic semantic
interactions in programmer behavior: A model and
experimental results. Intl. J. Comp. and Info.
Sciences, 18:219–238, 1979.

[21] E. Soloway and K. Ehrlich. Plans in programming:
Definition, demonstration and development. Empirical
Studies of Programming Knowledge. IEEE
Transactions on Software Engineering, pages 595–609,

1984.

[22] E. Soloway, J. Pinto, S. Letovsky, D. Littman, and
R. Lampert. Designing documentation to compensate
for delocalized plans. Communications of the ACM,
31:1259–1267, 1988.

[23] A. von Mayrhauser and A. Vans. Comprehension
processes during large scale maintenance. 16th
International Conference on Software Engineering,
1994.

[24] A. von Mayrhauser and A. Vans. Program
understanding: Models and experiments. Advances in
Computers, M. C. Yovits and M. V. Zelkowitz, Eds.
Academic Press Limited, 40, 1995.

[25] L. Weissman. A methodology for studying the
psychological complexity of computer programs. PhD
thesis, 1974.

17

Primary investigation of applying Hidden Markov Models
for eye movements in source code reading.

Paul A. Orlov
University of Eastern Finland

School of Computing
P.O. Box 111, FI-80101, Joensuu, Finland

St. Petersburg State Polytechnic University
Department of Engineering Graphics and Design

Russia, 195251, St.Petersburg
paul.a.orlov@gmail.com

ABSTRACT
Source code comprehension is closely connected with read-
ing process. To evaluate different factors that influence the
reading process, we propose to build a mathematical model.
This paper describes basic steps for building the eye move-
ment analysis model during source code reading. We present
the test model and the method of developing this kind of
models.

The developing method of transforming the source code in
Java programming language to abstract semantic elements
and coded alphabet is presented here. The basic Hidden
Markov Model (HMM) is created as fitting to the given
source code. The results arouses more questions than pro-
vides answers or insights, but ”Once you do know what the
question actually is, you’ll know what the answer means...”
(Douglas Adams)

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

Keywords
Source code, reading models, eye-tracker, HMM

1. INTRODUCTION
Source code reading is a highly complex process, in com-

parison to natural text reading, and involves many cognitive
process. Eye movements that follow letters, math symbols
and operants form curious graphs: from line to line, form
top to bottom and back. Backwards – eye jumps are nor-
mal for source code reading (Crosby and Stelovsky, 1990),
but they are very rare for normal or natural text reading
(Rayner et al., 2009; Reichle et al., 2003; Nilsson and Nivre,
2009; Kotani et al., 2010). Reading process seems to cor-
relate with information processing to reach the aim of un-
derstanding the semantic meaning of text. That is why the
reading process in general is an interesting field of scientific
investigations.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
International Workshop at the 9th WiPSCE Conference on Computing Ed-
ucation Freie UniversitÃd’t Berlin, Germany, November 7th - November
8th, 2014
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

Human vision process and visual perception is based on
eye movements. Human eye moves even when a person is
asleep. Eight different types of eye-movements are identi-
fied, but for analysis of information processing two basic
types are used. The first type is fixations – very slow eye
movements, that drift around one physical point. They are
not an absolutely freezing state, but are still called fixa-
tions. Second type of eye movements are saccades. The
saccade is a ballistic type of eye moments. The information
processing is usually associated with fixations (Bridgeman
et al., 1994; Otero-Millan et al., 2013). To simplify it is
possible to say that the vision process proceeds in the fol-
lowing way: ... saccade -> fixation -> saccade -> fixation
... This rough approximation gives us an explanation of vi-
sual process as a potential system for modelling. To find the
connection between vision process and the way people un-
derstand natural language several mathematics models were
duilt(Reichle et al., 2003). These models can be used as an
abstract concept for checking scientific hypotheses, for ex-
ample, the question about next eye-movements fixation and
about the lengths of saccade (like E-Z reader model (Reichle
et al., 2003)).

From applied point of view, eye-movement reading mod-
els could be useful for differentiation between expert reader
and novice, or for evaluation of influence of extra factors on
reading process (and perception in general). That is why
we decided to investigate eye-movement model for reading
of the source code. Our motivation is to define main ele-
ments of source code and to find ways of model the process
of viewing these elements.

2. EYE MOVEMENTS IN SOURCE CODE
READING

The basic study by Crosby and Stelovsky shows differ-
ences in reading of source code(Crosby and Stelovsky, 1990).
Figure 1 shows the fixations and lines – saccades from one
fixation to another. We can suggests that information from
source code is processed from fixation mostly. As fixations
focus on distinct elements of source code, we should decom-
pose the source code into basic elements. Identification of
text elements is referred as annotation and is quite popular
in this area of studies (Busjahn et al., 2014; Turner et al.,
2014), therefore in order to understand how the information
is processed we should annotate each fixation. We could not
find any basic list of semantic annotation elements in previ-
ous studies. It seems that this kind of list should be different
for different programming languages. For the given source
code sample we defined the list of abstractions as follows:

18

Figure 1: Eye movements during source code read-
ing. First line is annotated with semantic abstrac-
tion elements.

• Definition. name(method, class, variable). -> N

• Method calling. -> Mc

• Variable using in math. operator. -> Uv

• Operator -> O

• Constant using in math. operator. -> Const

• Type in definition. -> T

• Semicolon and curved brackets. -> Cb

• Static. Definition. -> S

• Access specifier. Definition. -> A

The list is not full, but it was built from the original source
code. The eye movements create patterns and strategies of
how the source code is read(Busjahn et al., 2014). Analysis
of these perception chunks is not a trivial process (Gobet
and Simon, 1998; Cant and Jeffery, 1995). It is possible
to count the number of fixations for each semantic block,
for example we can count all fixations in access keyword
block and, we can calculate total fixation counts and total
processing time. If we code all abstract semantic blocks by
letters we will have a picture like on figure 2.

Figure 2: The corresponding of eye movements to
annotation to abstract semantic block. Block coded
to letters. Gaze fixations shown as ellipses.

One of the problem of comprehension the reading process
are the two dimensions of stimuli. There are lines with text,
even if the line consists of only one symbol like ”{”. Lets us
modify this 2D stimuli into one dimension vector:

A,C,N,Cb, T,N,O,Const, Cb,A, S, T,N,O, T... (1)

After this transformation we can analyse reading process
in a why the alphabet is process. The example this trans-
mission shows the list of abstractions after the ”->” symbol
(Access specifier. Definition. -> A).

3. HIDDEN MARKOV MODELS
The main thesis of Hidden Markov Models(HMM) was

formed and published between 1960 and 1970 by Baum and
colleagues. Today HMM are very useful in various infor-
mation technology fields, like speech and image process-
ing(Baum and Petrie, 1966; Baum et al., 1967, 1970).

Let us consider the concept of HMM in the ralation to our
alphabet and observable letter sequence of abstract semantic
elements. In the figure 3, we see 3 levels. The last, third level
is the hidden level of HMM it self. This is the sequence of
the states. The probability for the HMM moves to the next
stage defined by transition probability matrix - a. In each
time HMM could be in the one single state. The number of
states is limited.

Figure 3: The concept of HMM with source code
abstractions as an observed sequence. 1) Level is an
observable sequence of gaze fixations on source code
elements that corresponds to semantic abstraction
code alphabet. 2) The alphabet of abstractions it
self. 3) Hidden level of stats of HMM

The second level is our alphabet of semantic elements.
Each HMM state corresponds to some probability b with
letters from it. It means that if HMM is, for example, in a
state one, there is a probability of b1(N), for choosing letter
N, probability b1(Mc) for choosing letter Mc and so on. Fi-
nally we have the first level - level one). This level is a real
observable sequence of letters from our semantic abstraction
alphabet. The observation corresponds to gaze fixations on
text elements of source code. In a speech recognition field
the transition matrix a corresponds to the time of being in
current state for HMM. There are some classical assump-
tions for the applications of HMM (see (Baum and Petrie,
1966)).

4. BASIC EYE MOVEMENT MODEL FOR
SOURCE CODE READING

To build the basic eye movement model for source code
reading we used our alphabet of abstraction. We annotated
each fixation and found suitable letter for them. As a result
we got the observable sequence of a person’s source code
reading. To build a HMM from that sequence we used K-
means learner algorithm and Jahmm Java library. We create
three states for our model. Finally, the model on figure 4
was created.

This model was tested on the second subject (second source

19

Figure 4: The 3 stats basic HMM for eye movement
during source code reading.

code reader), but obviously we didn’t receive brilliant re-
sults. In conclusion we could propose, that the current eye
movements model of source code reading is just a concept
for the future investigation and studying.

5. DISCUSSION
There are some limitations in our approach. First of all,

our model will work only in one way: it is impossible to
correlate abstraction semantic blocks with the real text ele-
ments (words) in the source code uniquely. This back-way
process is based on probability.

The next aspect is that we understood is that each text
element of source code has one abstraction. We can com-
pare this with hieroglyph reading (Osaka, 1992), where each
fixation corresponds with one hieroglyph. There are several
fixations for the one six letter word in european languages.
Variable naming occured in long words or even phrases,
for example like this: bufferedReader.readLine. Taking into
account this fact, we should integrate the natural reading
model approach into the model of source code reading.

That list of abstract semantic elements is not full. Perhaps
it should be done more accurate to include each computer
language term as a separate semantic bloc. It means, that
terms public and private should be in separate abstractions
(in current annotation scheme they are in the one abstrac-
tion block - Access specifier. Definition.) Experimenting
with different levels of abstraction is probably a good way
to test the model’s possibilities and limits.

Next question is the number of states for the model. In
this case we decided to include three states, like in speech
recognition algorithms. The question about an appropriate
number of states should be investigated more.

6. REFERENCES

References
Baum, L. E., Eagon, J., et al. (1967). An inequality with ap-

plications to statistical estimation for probabilistic func-
tions of markov processes and to a model for ecology. Bull.
Amer. Math. Soc, 73(3):360–363.

Baum, L. E. and Petrie, T. (1966). Statistical inference for

probabilistic functions of finite state markov chains. The
annals of mathematical statistics, pages 1554–1563.

Baum, L. E., Petrie, T., Soules, G., and Weiss, N. (1970). A
maximization technique occurring in the statistical analy-
sis of probabilistic functions of markov chains. The annals
of mathematical statistics, pages 164–171.

Bridgeman, B., Van der Heijden, A. H. C., and Velichkovsky,
B. M. (1994). A theory of visual stability across sac-
cadic eye movements. Behavioral and Brain Sciences,
17(02):247–258.

Busjahn, T., Begel, A., Orlov, P., Sharif, B., Hansen, M.,
Bednarik, R., and Shchekotova, G. (2014). Eye Track-
ing in Computing Education Categories and Subject De-
scriptors. In ICER ’14 Proceedings of the tenth annual
conference on International computing education research,
pages 3–10, Glasgow, Scotland, United Kingdom. ACM
New York, NY, USA Âl’2014.

Cant, S. N. and Jeffery, D. R. (1995). A conceptual model
of cognitive complexity of elements of the programming
process. Information and Software Technology, 37(7):351–
362.

Crosby, M. E. and Stelovsky, J. (1990). How Do We Read
Algorithms ? A Case Study. Computer, 23(1):24–35.

Gobet, F. and Simon, H. A. (1998). Expert Chess Memory :
Revisiting the Chunking Hypothesis. Memory, 6:225–255.

Kotani, K., Yamaguchi, Y., Asao, T., and Horii, K. (2010).
Design of Eye-Typing Interface Using Saccadic Latency
of Eye Movement. International Journal of Human-
Computer Interaction, 26(4):361–376.

Nilsson, M. and Nivre, J. (2009). Learning Where to Look
: Modeling Eye Movements in Reading. In Proceedings
of the Thirteenth Conference on Computational Natural
Language Learning (CoNLL),, number June, pages 93–
101, Boulder, Colorado. Association for Computational
Linguistics.

Osaka, N. (1992). Size of saccade and fixation duration of
eye movements during reading: Psychophysics of japanese
text processing. JOSA A, 9(1):5–13.

Otero-Millan, J., Macknik, S. L., Langston, R. E., and
Martinez-Conde, S. (2013). An oculomotor continuum
from exploration to fi xation. In Proceedings of the Na-
tional Academy of Sciences 110.15, pages 6175–6180.

Rayner, K., Castelhano, M. S., and Yang, J. (2009). Eye
movements and the perceptual span in older and younger
readers. Psychology and aging, 24(3):755–60.

Reichle, E. D., Rayner, K., and Pollatsek, A. (2003). The E-
Z reader model of eye-movement control in reading: com-
parisons to other models. The Behavioral and brain sci-
ences, 26(4):445–76; discussion 477–526.

Turner, R., Falcone, M., Sharif, B., and Lazar, A. (2014). An
eye-tracking study assessing the comprehension of c++
and Python source code. In Proceedings of the Symposium
on Eye Tracking Research and Applications, pages 231–
234, Safety Harbor, Florida. ACM.

20

Notes on Eye-Tracking Data from a Novice Programmer
James H Paterson

Glasgow Caledonian University
Cowcaddens Road

Glasgow G4 0BA, UK
James.Paterson@gcu.ac.uk

ABSTRACT
This paper presents notes on issues related to analysing eye-
tracking data from a novice programmer progressing through an
introductory course in Java programming. The data are used to
make observations on evidence of development of code reading
strategy, and these are related to models of program
comprehension. Some suggestions for the timing of studies within
the learning process and for useful visualisations and tools are
included.

Categories and Subject Descriptors
K.3.4 [Computer and Information Science Education]:
Computer science education, information systems education

General Terms
Experimentation, Human Factors.

Keywords
Eye tracking, code reading, computing education

1. INTRODUCTION
Gaze data collected using an eye-tracking device can provide
insights into problem solving, reasoning and search strategies, and
eye trackers have been used in a wide range of fields such as HCI
and human factors (Poole and Ball, 2006) There is considerable
interest now in the use of eye-trackers to study program
comprehension in both experienced and novice programmers, and
there is potential to gain an understanding of thought processes to
inform approaches to teaching and learning programming.

A workshop was held in 2013 to analyse eye-tracking data
gathered from expert users reading code examples, to develop a
scheme for coding features in the data with relation to program
elements and reading strategies, and to consider the implications
and potential for future research (Busjahn et al., 2014).

This work follows up on that workshop by transferring the focus
to data gathered from a novice programmer progressing through
examples from an introductory Java programming course. The
aims are to find out whether developmental stages in the novice’s
thought process can be identified and to suggest approaches to
eye-tracking research specifically related to the study of novices.

2. DATA
Data were gathered for a single learner, with no previous
experience of Java, at three stages in an introductory course in
Java programming. At each stage the participant was given a short
sample program and asked to summarise the function of the
program. The first sample, following on from a basic introductory
lesson, was simple pseudocode, while the others were Java code.
In the second example, which reads in two numbers and calculates
their average, all the significant code is inside a main method and

there are no control structures, while the third example consists of
a class with a static method and a main method which calls that
method and passes a parameter to it. The code in the main method
consists of two nested for loops which draw a pyramid of astersisk
symbols with extent determined by the method parameter.

These examples correspond to the types of programs which the
participant would be expected to understand at the relevant stage
of her study. The responses to the post-task questions indicate that
the participant has been successful in understanding the overall
purpose or result of each program.

Data was presented for analysis in a number of forms, including
videos showing detected fixations in real time, scan path diagrams
each showing all fixations and saccades from one experiment,
superimposed on the sample code and timelines showing fixations
by line of code graphed against time. Each sample program was
divided into lines and also further divided into areas of interest
(AOIs) within lines, and each fixation was where possible
associated with the closest line and AOI.

3. STAGES OF DEVELOPMENT
One of the outcomes of the previous workshop was the refinement
of a coding scheme which allows observed fixations to be
expressed in terms which reflect the participant’s thought process,
in terms of program elements (singly or compounded into larger
elements such as parameter lists or blocks), patterns and
strategies. The latter two categories reflect higher-level views of
the participants’ actions or aims and require interpretation of the
data.

It is interesting to consider the way a novice programmer’s
development might be reflected in the fixation codes that are
present in their gaze data. The capabilities of a novice
programmer (hopefully) expand rapidly during a course, and
hence the range of codes likely to be identified should expand.
The novice develops in terms of program knowledge, building
upon previous lessons and learning how to use new constructs.
Stages of program knowledge development may be strongly
influenced by the course structure, for example “objects-first” or
“objects-later”. In parallel with this there should be development
of skills generally related to writing and reading code, for
example in terms of applying new strategies to solving problems
and assimilation of programs while reading code.

The expected development of program knowledge was reflected
in the code for the three samples. For example the first contains
no Java. Only the final sample contains a method and associated
method call within the code presented, so codes within related
categories, such as Signature and Method Call will not be present
before then. An interesting observation on the second sample is
the large number of fixations on lines of code which import the
Scanner class and instantiate a Scanner to be used to get user
input. These lines, while necessary, are essentially irrelevant to
the overall purpose of the program. The amount of attention paid

21

to these might indicate that the use of Scanner is unfamiliar to the
participant who therefore needs to deduce their purpose. This
might suggest a new code, for ‘utility’ or ‘boilerplate’ code which
is required to make a program execute but whose detail is not
fundamental to the purpose of a specific program. Arguably the
details of the signature of the main method fall into this category
also in cases where the program arguments are not used.

Development of general programming skills may be reflected in
the emergence of patterns and strategies within the gaze data, and
in characteristics of the data for each sample viewed as a whole.
Some observations have been made of the novice programmer’s
gaze data to find whether there is evidence of this. The total time
spent on each sample increases from 14 seconds in the first case,
then 53 seconds and 86 seconds. This does not reflect the length
of the code (the third sample has approximately the same number
of lines as the second one) but does indicate a different thought
process for the more complex structures in the third sample. In
both the second and third cases there were many fixations off
screen throughout which may indicate moments of thought about
the information which has just been obtained by reading.

Figure 1. Timeline of participant’s gaze for second program

Figure 2. Timeline of participant’s gaze for third program

The timeline for the second sample, shown in figure 1, shows
evidence of the scan pattern (Uwano, 2006) or DesignAtOnce
strategy]in which the participant reads the whole code first before
focusing on specific parts. In fact. the second timeline shows quite
distinct phases beginning with a scan and ending with a sequence
of repeated movements which might be coded as TestHypothesis.
This indicates some development of strategies which are not
clearly present in the first.

However, these strategies are also not present in the third timeline,
shown in figure 2. Here there is a phase early on which focuses on
a small region of code that contains the definition of two nested
for loops inside a method. There is a phase much later on where
there is possibly evidence of Flicking between method definition
and call. This may appear to be a retrograde step on the part of the
participant in applying strategy. However, understanding the
nested for loop statements in this example is essential to the task
the participant was asked to do, and these statements carry more
information than any other part of the program.. By determining
how the loops interact it is possible to conclude what the program
will do. The method call simply supplies an actual parameter
which determines the number of rows in the pyramid. It could be
argued that this approach shows development of the ability to
apply a strategy which is best suited to a particular program.

4. ASSIMILATION PROCESS
Program comprehension by both expert and novice programmers
has been the subject of an extensive body of research over many
years (Schulte et al., 2010). A variety of assimilation strategies
have been identified and described as, for example, top-down,
bottom-up and opportunistic. Top-down models describe the
assimilation process as one in which knowledge of the program
domain is applied and mapped to the microstructure of the code,
while bottom-up models involve starting with individual code
elements and chunking these into higher-level abstractions.
Opportunistic models reject the dominance of either of top-down
or bottom-up processes.

 Such processes describe the overall assimilation of the program
and could be considered as a tier above the “strategy” and
“pattern” tiers in the coding scheme, where the assimilation may
consist of a number of phases each of which could include one or
more strategy or pattern. It may be useful to consider the ways in
which strategies coded in gaze data combine in phases to reflect
specific types of assimilation process.

To take one example, in the bottom-up process described by
Pennington (1987) two distinct models of the program evolve.
The program model is essentially a control-flow model, while the
situation model relates more closely to data flow. Programmers
with a high degree of comprehension were observed to cross-
reference frequently between these models, and an indicator of
this might be successive phases in which DataFlow and
ControlFlow strategies are coded.

Gaze data alone can only tell us directly about the participant’s
attention to features of the text surface, rather than the mental
model of the function of the program, and any conclusions on the
latter may be difficult to infer. Does the presence of
DesignAtOnce in the initial phase indicate a specific assimilation
process, for example top-down? This may apply in the case of the
second sample as the participant discovers the domain or overall
purpose of the program from the class name (CalculateAverage)
and reads through the code to build an initial mapping. Other
complementary data would be required to verify this, however,
such as think-aloud protocols or textual analysis of responses to
post-task questions using a coding scheme such as that described
by Good & Brna (2004).

5. LEARNING PROCESS
The data presented here was taken from three points in time
spaced throughout an introductory Java course. There is a
question as to what points of time in a course will provide the
most useful evidence of learners’ development. Concentrating
experiments in the first part of a course may capture rapid early
development. This might be particularly the case for the
“complete novice” who is experiencing programming for the first
time. However, students may individually reach a stage of rapid
development at different times as they cross some conceptual
threshold, and it may be more useful to gather data fairly
constantly throughout the course to give the possibility of
capturing such transitions if they occur and determining different
development processes among participants.

It may be useful to try to decouple the development of
comprehension strategy from program knowledge by choosing
samples at some stages which do not rely on the most recently
acquired knowledge, but rather are similar in knowledge content
to ones used at an earlier stage. Would the participant adopt a

initial phase final phase

initial phase Flicking phase

22

different strategy for a similar problem as a result of having has
developed more programming skills?

6. VISUALISATIONS AND TOOLS
Some visualisations were provided along with the data from the
novice gaze experiments to aid in analysis. It is interesting to
consider the usefulness of these, and what variations of these or
new visualizations or tools would be of value.

Videos of each experiment presented the entire set of fixations
and saccades in real-time, overlaid on the code text surface.
Viewing the same data in eyeCode Fixation Viewer allowed
starting and stopping and step-by-step viewing. Scan path
diagrams showed all fixations at once overlaid on the code. These
did not seem very useful here as the large number of fixations in
each experiment made it difficult to discern particular areas of
focus. It is possible that heat maps would be somewhat more
helpful in highlighting clearly which AOIs received the most
attention. However, while heat maps are widely used in eye-
tracking research, the process of program assimilation seems more
related to the movements between elements rather than the degree
of focus on specific elements (although this may depend on the
nature of the task given if something more specific than simply
explaining the overall function of the program.

Timelines, as shown in figures 1 and 2, proved the most
immediately useful in visualizing patterns and phases in this gaze
data. Often, however, there are multiple successive fixations on a
single line, and it would be useful for exploratory analysis to be
able to expand each line in the timeline to see the sequence of
fixations on the AOIs in that line. The overall clarity of the
timeline may be diminished, however, and this may work best as
an interactive visualization in which lines can be expanded as
required and collapsed back to showing the line only.

The timeline shows temporal relationships clearly. Alternative
visualisations showing spatial relationships may also be useful in
identifying which other elements of the code were considered to
be related to any given element. Again an interactive display
would be useful for exploring the data. This display might be
similar to that implemented by Ristovski et al. (2013) in their tool
eCode, in which selecting an AOI interactively highlights other
AOIs which the participant’s gaze moved to immediately
following from the selected one.

Visualisations based on raw gaze data with the text surface
divided into lines or AOIs can be supplemented by visualisation
of the data following coding (whether accomplished by manual or
automated techniques), and the previous workshop demonstrated
some useful approaches, for example based on the flow between
specific identifiers or blocks.

Control flow in realistic programs passes between program
components which are often in separate source code files. Even in
introductory Java courses students may work with code
distributed across several files. In most eye-tracking studies the
sample program is presented to the participant as text within a
single viewport. There may be value in integrating eye-tracking
software with the IDE that is used when developing code. This
may open up the possibility of analysing gaze for programs which
are distributed across multiple source files. The IDE could
potentially report to the eye-tracking software when a new code
window is brought into view, although visualisation of this might
be challenging. Furthermore, code editors in modern IDEs
encapsulate understanding of the elements and structure of the
code in order to offer features such as syntax and scope
highlighting and context sensitive menus and information. This
could be exploited to reduce the need for, or improve the
reliability of, coding at tiers below the pattern tier.

7. REFERENCES
[1] Busjahn, T., Schulte, C., Sharif, B., Begel, A., Hansen,

M.,Bednarik, R., Orlov, P., Ihantola, P., Shchekotova, G. &
Antropova, M. 2014. Eye tracking in computing education.
In Proceedings of the tenth annual conference on
International computing education research (pp. 3-10).
ACM.

[2] Good, J., & Brna, P. 2004. Program comprehension and
authentic measurement:: a scheme for analysing descriptions
of programs. International Journal of Human-Computer
Studies, 61(2), 169-185.

[3] Pennington, N. 1987. Comprehension strategies in
programming. In Empirical studies of programmers: second
workshop (pp. 100-113). Ablex Publishing Corp.

[4] Poole, A., & Ball, L. J. 2006. Eye tracking in HCI and
usability research. Encyclopedia of human computer
interaction, 1, 211-219.

[5] Ristovski, G., Hunter, M., Olk, B., & Linsen, L. 2013. EyeC:
Coordinated views for interactive visual exploration of eye-
tracking data. In Information Visualisation (IV), 2013 17th
International Conference (pp. 239-248). IEEE.

[6] Schulte, C., Clear, T., Taherkhani, A., Busjahn, T., &
Paterson, J. H. 2010. An introduction to program
comprehension for computer science educators. Proceedings
of the 2010 ITiCSE working group reports, 65-86.

[7] Uwano, H., Nakamura, M., Monden, A., & Matsumoto, K. I.
2006. Analyzing individual performance of source code
review using reviewers' eye movement. In Proceedings of the
2006 symposium on Eye tracking research & applications
(pp. 133-140). ACM.

23

Programming Code Reading Skills: Stages of
Development Encountered in Eye-Tracking Data

Mareen Przybylla
University of Potsdam
August-Bebel-Str. 89

14482 Potsdam
+49 331 977 3104

przybyll@cs.uni-potsdam.de

ABSTRACT
In this position paper the methods used for analyzing eye-tracking
data from code reading and comprehension experiments are
described. Analyzing such data can contribute to our
understanding about how program code is read and understood.
The data to be analyzed were assigned to the author prior to a
workshop on “Analyzing the novice's gaze” – a follow up for a
similar workshop held the year before, where expert’s data were
analyzed. The aim was to find different ways of analyzing eye
movement data. Experiences with and results of the analyses of
the data are presented and ideas for further research and possible
applications are discussed.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Information
Science Education – Computer science education, literacy.

D.2.5 [Software Engineering]: Testing and Debugging – Code
inspections and walk-throughs, Diagnostics, Tracing.

General Terms
Experimentation, Human Factors

Keywords
eye-tracking, eye movement, code reading, program
comprehension

1. INTRODUCTION
When learning to program, code reading and comprehension is
essential. Students need to be able to not only read and understand
single lexical units, but also the overall functionality of programs.
They have to be able to follow the program flow, the order in
which the program is executed, in which methods are called,
variables initialized, parameters handed over, etc. Otherwise they
won’t be able to find errors, debug their programs or modify
existing programs in the manner intended.

The analysis of eye-tracking data from experts and novices can
contribute to our understanding about how program code is read
and how understanding is demonstrated. Prior to the analysis of
the data, I would expect that when advancing their skills, students
would show improvements concerning the understanding of
program, concerning the time needed to get a grasp of the
functionality of programs and concerning the identification of the
relevant parts within program code to answer a particular
question. In this position paper eye-tracking data of a novice
programmer was analyzed prior to the workshop “Analyzing the
novice's gaze” which is to be held at the WiPSCE conference in
Berlin. The tasks given to students whose eye movements were
tracked will be explained first, then the analysis method and

results are presented and finally conclusions drawn and open
questions discussed.

2. TASKS
The experiment took place after three particular lessons of a three
month-long weekly java course at the Freie Universität Berlin (at
the beginning of the term, mid-term and end of term). The
participants were given short tasks after each of those lessons. The
one that is going to be analyzed for this workshop was to read and
understand the given code and then give a summary. The
instruction given before the programs were presented was always
the same: Please read and comprehend the following source code.
When you are done, press the left mouse button. Then you will be
asked to give a SUMMARY.
The programs given to the student were the following.
After lesson 1:

public class PrinterClass {
 public static void main (String [] args) {
 System.out.print ("answer=") ;
 System.out.println (40 + 2) ;
 }
}
After lesson 4:

public class TextClass {
 public static void main (String [] args) {
 String text = "Hello World!" ;
 int positionW = text.indexOf ("W") ;
 int textLength = text.length () ;
 String word = text.substring (positionW , textLength - 1) ;
 System.out.print (text.replace (word , "Sun")) ;
 }
}
After lesson 6:

public class PrintPattern {
 public static void printMethod (int numberOfRows) {
 for (int row = 1 ; row <= numberOfRows ; row ++) {
 for (int col = 1 ; col <= row ; col ++) {
 System.out.print ('*') ;
 }
 System.out.println () ;
 }
 }
 public static void main (String [] args) {
 PrintPattern.printMethod (3) ;
 }
}

24

The task given to the student after each program was presented
was always the same: Please give a summary of the program.

3. DATA ANALYSIS
Before analyzing the data, I went through the different tasks to set
my expectations. The provided data was then analyzed through
three stages. First, the videos containing visualizations of what the
participant looked at were examined. Second, the timelines of
each lesson were analyzed. Those two stages helped to identify
the overall strategy of the participant on her way to understanding
the code. Afterwards I studied the tables containing more detailed
information about the fixation times in detail. This helped in
identifying the accurate length of fixation times. I was particularly
interested in those areas, where longer fixation times occurred.
Only at the very end I looked into the existing coding scheme [1]
and found several terms for what I found in the analysis. I wanted
to stay away from the existing scheme for the beginning in order
to analyse the data open-minded.

3.1 Getting an Impression
3.1.1 Lesson 1
A correct summary of the program would have been: this program
displays the text “answer=42” (followed by a linebreak).
The summary given by the student (EU10) was:

answer =
42

This is both, too short for a summary and incorrect, as the actual
output would not include a line break.

From the eye movement data I got the impression that the student
tried to gain an overall understanding of the code in taking the
approach of reading the whole program line by line. She then
started jumping between the relevant bits for output construction.
This occurred between seconds eight and twelve (fixations 26 -
38), which is between the two output lines three and four.
Afterwards (with fixation 40, so exactly after half of the time
used) she started over from the beginning. This second time she
did almost exactly the same thing – either to understand what
remained unclear or to check if her gained understanding was
correct. This time, jumping back and forth happened between
seconds 20 and 25 (fixations 60 - 80), again between the two
elements that together form the output of the program (Figure 1).

Figure 1. Method of analysis by EU10 after the first lesson.

This time, the jumps occurred more precisely between the
expressions print, println and answer=, and were probably done
to compare the two print methods. Presumably this is where the

student decided that there should be a line break between the
equal sign and the number 42 in the output.

In both cycles the jumps are probably done to find out about the
relationship between the two parts of the output. This seems to be
the hard part of understanding for the participant, as this is also
the area in the code that was gazed at most of the time. In sum,
10.8 seconds, which is about 42% of the total time, she gazed at
those three items.
The behavior of the student in this early phase of learning to
program could be described as double linear analysis – an
analysis that goes through the whole program line by line twice.

3.1.2 Lesson 4
A correct summary would have been: this program replaces the
word “World” in the string “Hello World!” with the text “Sun”
and displays “Hello Sun!”.
The summary given by the student was:

Replace Word with the string "Sun"
This answer is not complete as it omits the output, but somehow
correct. However, it is unclear if the participant’s typing error
actually meant “World” instead of Word, or if she meant the
variable word. Either way, this is what is replaced with “Sun” by
the program.

From the eye movement data I got the impression that the student
initially started with a strategy similar to the task after lesson 1.
She read the code line by line, probably to get an overall
understanding of what happens in the code. This is interrupted by
short jumps amongst two lines between seconds five and ten
(fixations 21 - 34), where she seems to think about the value to be
assigned to the variable positionW. After completing this first
cycle, in contrast to the previous time she never goes back to the
class declaration and main method signature, which might
indicate that she by now knows what those parts do and that no
further analysis is needed there in order to find out about the
functionality of the program (Figure 2). Instead, she constantly
jumps between those lines within the code that actually create
meaning (mostly lines 3, 6 and 7).

Figure 2. Method of analysis by EU10 after fourth lesson.

It seems that in order to understand the details, the participant
moves her gaze between pairs of lines that reference each other.
Obviously lines three and six where the original text and the word
to be replaced are declared, are regarded as important for code
comprehension by the student, similar to lines four and five,
which define the beginning and end of the word to be replaced.
There are several such observations, e.g. further meaning seems to
be created between seconds 37 and 41 (fixations 121 - 122) and
between seconds 42 and 45 (fixations 126 - 130), where slow
linear movements indicate that the values for positionW and
textLength could be determined. In the next 25 seconds the data
shows rather long fixations on lines six and seven, possibly
indicating that in thought the value for word and the output are
generated. Another 20 seconds show eye movements between
lines four, five, six and then three that might indicate a double
check of the gained result in again looking at how the word to be
replaced is identified from the text given.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’10, Month 1–2, 2010, City, State, Country.
Copyright 2010 ACM 1-58113-000-0/00/0010 …$15.00.

25

While to this point the eye movements were explicable for the
most part, what follows seems to be unsystematic and
incomprehensible. Rapid movements between seemingly
unconnected parts of the program code are followed by a long
stare at positionW and textLength as if to find meaning in those
two variables. Then, the very last part of the data again shows
rapid movements across the code lines.

I would summarize the behavior of the student in this phase of
learning to program as linear-logical analysis because in contrast
to the earlier data, these data show clear examples of logically
following the program flow.

3.1.3 Lesson 6
A correct summary of the program would have been: this program
displays a triangle of asterisks, where the number of rows is
handed over as a parameter – in this particular example 3. Each n-
th row contains n asterisks (first row one, second row two, and so
on). This concrete example therefore produces the following
output:

*
**

The summary given by the student was:

two for loops for raw (sic!) and col
This is not a correct answer, as it neither describes the program as
a whole nor gives the output produced by the program.

In the data it seems that the participant analyzed the program
following the program flow rather than a dominantly linear
approach (Figure 3).

Figure 3. Method of analysis by EU10 after sixth lesson.

This becomes evident within the outer loop, where a parameter
value is needed that was handed over to the method from the
method call. The gaze then jumps down to the method call,
without any larger stops on lines in between, which might indicate
that the participant knows what she’s looking for and where to
find it. She then continues reading the code in her own logic, first
comparing the variable initializations in the two loops, then
looking at the loops’ exit conditions. Afterwards very quick jumps
between different parts of the program occur, which with good
will might be interpreted as following the order in which the loops
are exited. However, those movements are really fast and it is thus
questionable, if the gaze is truly following the flow or just
randomly jumping on the screen. After 26 seconds (fixation 102)
the reading of the nested loops is finished, now the gazes moves
to the main method and its body. Until here, the movements were
quite comprehensible. What comes then is similar to what
happened in the prior example: seemingly random movements
across the code lines can be observed that allow for no further
interpretation.
Summarizing, the behavior of the student in this final phase of the
java course shows very clear evidence of program comprehension,
even though she does not come up with the right answer. She

analyzes the code in reading it by following its logical structure. I
would therefore describe her approach as logical analysis.

3.2 Interpretation of the Results
Even though the analysis was conducted on a rather superficial
level, it can be seen that some development took place over time.
In the beginning, the participant read the code line by line and
repeated the whole procedure from the beginning. This indicated
that the structure of java programs was very new to her, she did
not yet know which parts were really relevant. In the second
example the student was still close to this linear analysis for the
overall understanding of the program, but then started to follow
the program flow in several shorter examples when trying to
understand the details. In the last example, the linear analysis took
no longer place. Instead, the code was read as if the program was
executed. With the progress also came a lack of thoroughness. In
the first task the student went through the whole procedure twice
and used half of her time for checking the result. In the second
task she seemed to check her findings quicker, using about a third
of the time for validating her answer. In the last task such a
behavior was no longer to be recognized. However, the seemingly
random eye movements could not be interpreted and might be
very rapid reassurance of the calculated answers.

3.3 Relation to the Coding Scheme
When looking at the existing coding scheme from the experts’
data, I recognize several patterns that I also found in the data.

3.3.1 Scan
What I referred to as linear analysis is called Scan according to
the coding scheme. This occurred more visibly in the novice stage
and faded with growing expertise.

3.3.2 LinearHorizontal
LinearHorizontal reading was observed at all stages, usually at the
beginning of the analysis. For the novice programmer this was
observable throughout the whole time.

3.3.3 LinearVertical
LinearVertical reading could be observed at the earlier two stages,
for the second task only at the beginning of the analysis, probably
to get an overall impression of the program’s functionality. Again,
for the novice programmer (first task) this was observable
throughout the whole time.

3.3.4 Flicking
Flicking occurred frequently at every stage in different forms
(RetraceDeclaration, RetraceVariable), mostly when it came to
understanding the details of a program.

3.3.5 JumpControl
JumpControl is what I referred to as following the program flow.
It occurs more often for the more experienced programmer (here:
task 3).

3.3.6 Thrashing
Thrashing did not appear in the first example, but was visible with
the later two, both times after – in my impression – the program
was understood. This is possibly a method of validation.

3.3.7 JustPassingThrough
JustPassingThrough lines did appear at all stages, but only rarely
for the first task and quite often with growing expertise. I see a
relation to Flicking here: the more flicking, the more
JustPassingThrough.

26

4. DISCUSSION
As this analysis gave only very limited view into how novices
learn to read code, none of what was found here should be
generalized. However, the results in general meet my
expectations. The participant has clearly shown that in the end of
the course she was able to read program code in a way that
follows the execution order – something that she did not do in the
first task. For future research it is now important to analyze larger
data sets and see if those patterns are found elsewhere, too. The
approach towards the analysis of data (as described in section 3)
was helpful and can be recommended to anyone not familiar with
the existing coding scheme. If the scheme is known and well
understood, it might be better to make use of it and possibly add
additional codes. Concerning analysis tools, the material given
was very helpful. Often I had the desire to see longer traces

(approx. the last 15 gazes) and to slow down the video. A good
analysis tool should be able to highlight those chunks of code that
are related to each other based on the programmer’s gaze and
based on the program logic (control flow, data flow). What I feel
would be very interesting is the analysis of eye-tracking data of
students who are given faulty code and whose task is to fix the
problem.

5. REFERENCES
[1] Bednarik, R.; Busjahn, T.; Schulte, C. (Eds.) 2014. Eye

Movements in Programming Education: Analyzing the
Expert’s Gaze. Technical report. University of Eastern
Finland, Joensuu, Finland.

27

How Novices Understand a Program?

Kshitij Sharma, Patrick Jermann, Pierre Dillenbourg
Computer Human Interaction for Learning and Instruction

École Polytechnique Fédérale Lausanne, Switzerland
{kshitij.sharma,patrick.jermann,pierre.dillenbourg}@epfl.ch

To analyze the gaze patterns of a novice, while (s)he is
trying to understand a given program, we propose following
measures:

1. Gaze transitions among different parts of the program.
We consider the ”sub-line” level areas of interest.

2. Gaze distribution over different semantic elements of
the program ([1]). We define three categories of se-
mantic elements: structural (the keywords and punc-
tuation in the program), identifiers (names of methods
and variables) and expressions (the statements modi-
fying the identifiers).

3. Gaze transitions among different semantic elements of
the program ([2]).

4. Defining entropy and stability episodes and then look-
ing at the transition among different episodes ([3]).
The entropy capture the number of elements looked at
in a given time window and the stability captures the
similarity of gaze over two consecutive time windows.

In the dataset, there were two novice programmers (we
call them ”eu10” and ”do21”). All the answers given by do21
were very accurate while the answers given by eu10 were ei-
ther very shallow or incorrect. Hence, we decide to compare
the different gaze measures for these two participants. We
observe the following:

1. The only common program was ”lesson 6” for them
and we show the transition among different parts of
the program (Figures 1(a) and 1(b)). We see that
eu10 is focusing more on the ”printPattern” method.
Participant do21 has more transitions among the loop
structure and the main method that enables do21 to
provide concrete answer.

2. We compare the gaze distribution over structural, iden-
tifiers and the expressions for both the participants
(Figure 2(a) and 2(b)). We observe that do21 has looks
more on the expressions than eu10, which makes the
comprehension easier for do21 as expression contain
most data flow of the program.

3. We compare the gaze transitions among structural,
identifiers and the expressions for both the participants
(Figure 3(a) and 3(b)). We observe that both the par-
ticipants have the most transitions among the expres-
sions. However, eu10 also puts efforts to move among
identifiers as well. This indicated that the participant
is trying to guess the functionality by the names of
the methods and variables, which hinders the complete
and correct comprehension of the program.

4. We compare the gaze transitions among different en-
tropy-stability episodes for both the participants (Fig-
ure 4(a) and 4(b)). We observe that do21 has most
transitions among ”dispersed-unstable” episodes. This
reflects the fact that do21 spends most of the time in
connecting different parts of the program because the
gaze is often covering a bigger chunk of the program in
a given time window and most of the time this chunk
is different from the other. This behavior helps do21
understand the program in a better manner. On the
other hand, eu10 has most transitions among ”focused-
unstable” episodes. This reflects the fact that in a
given time window eu10 looks at a very small chunk
of the program and the two consecutive chunks are
different from each other. In terms of behavior this
translates into an effort of reading the program line-
by-line which hinders the understanding process ([2]).

References
[1] K. Sharma, P. Jermann, and P. Dillenbourg. Dual

eye-tracking. In Handbook of learning analytics and
knowledge. 2014, submitted.

[2] K. Sharma, P. Jermann, M.-A. Nüssli, and
P. Dillenbourg. Gaze evidence for different activities in
program understanding. 24th Annual conference of
Psychology of Programming Interest Group, 2012.

[3] K. Sharma, P. Jermann, M.-A. Nüssli, and
P. Dillenbourg. Understanding collaborative program
comprehension: Interlacing gaze and dialogues.
Computer Supported Collaborative Learning (CSCL
2013), 2013.

28

(a) eu10 (b) do21

Figure 1: Transitions

(a) eu10 (b) do21

Figure 2: Gaze distribution over semantic elements

29

(a) eu10 (b) do21

Figure 3: Transitions among semantic elements

(a) do21 (b) eu10

Figure 4: Transitions among different episodes

30

Eye movements in programming education 2: analysing
the novice’s gaze

Simon
University of Newcastle, Australia

simon@newcastle.edu.au

ABSTRACT
The gaze of a novice programmer was recorded as she examined
small Java programs at various stages of a short programming
course. The recordings taken at the start, in the middle, and at
the end of the course were analysed, in the hope of finding a
progression in code-reading competence as the course
proceeded. At the start of the course the novice read the code
just as one might read a story in a natural language, starting at
the beginning and reading through to the end. She then repeated
this process. In both subsequent recordings her gaze was more
directed, moving between what might be seen as the salient
features of the code. On both of these latter occasions she
apparently failed to grasp what the code was doing.
Nevertheless, there is clear evidence of the novice’s progression
from linear reading to a form of directed reading that might be
more helpful to a programmer.

Categories and Subject Descriptors
K3.2 [Computers and education]: Computer and Information
Science Education – computer science education

Keywords
Gaze analysis, computing education, programing education, eye
tracking

1. INTRODUCTION
A novice programmer taking part in a short introductory
programming course had her gaze recorded each week as she
read small segments of program code in preparation for
answering questions about the code. The course used Java as the
vehicle of instruction, and the programmer had just a little prior
experience writing Python. In an attempt to discern some form
of progression in her code-reading skills during the course, we
have examined the gaze recordings from the beginning, the
middle, and the end of the course.
The programmer’s answers to the questions about the code were
substantially correct in the first recording and incorrect or
incomplete in the next two recordings. Nevertheless, there is
clear evidence of a changed way of reading as the course
proceeds, a way that shows more understanding of the structure
of the code.

2. READING PATTERNS AND
STRATEGIES

In previous research [1] we identified a number of tiers in which
a gaze recording could be classified. In this analysis we will
focus just on the two higher-level tiers, pattern and strategy.
Pattern attempts to describe the gaze sequence by associating it
with similar sequences that have been previously identified. The
sequences identified to date are JumpControl, in which gaze
follows the order of code execution; Linear, in which the gaze

follows at least three lines sequentially, regardless of order of
execution; LineScan, in which gaze concentrates on a single line
in its entirety; Scan, in which gaze reads a sequence of lines
briefly, then returns to concentrate on points of interest;
Flicking, in which the gaze moves back and forth between two
related items, such as the formal and actual parameter lists of a
method call; and Thrashing, in which the gaze moves rapidly
and wildly in a sequence that appears to make no particular
sense. One further identified pattern is Signatures, in which gaze
covers a number of method signatures before moving to the
bodies of the methods. However, this pattern refers explicitly to
the content of the code, while the others refer to the code only in
more general terms; consideration should therefore be given to
removing this one from the list, unless it is joined by others that
also refer to code content. There is almost certainly scope for
further patterns.
Strategy is the crux of the analysis. It is in this tier that the
analyst tries to determine what the reader was thinking while
reading the code. DesignAtOnce, typically associated with
Linear and Scan patterns, suggests reading through part or all of
the code in a linear manner, intending to acquire an overall
understanding of it. Debugging is similar, but with gaze time
more evenly distributed over the elements, and suggests a search
for syntactic or semantic errors. ProgramFlow follows the
expected sequence of program control, with the apparent
intention of simulating program execution. TestHypothesis
involves repetition of a pattern of gaze, and suggests further
concentration in order to better understand a particular detail.
Trial&Error, somewhat like DesignAtOnce but with faster
reading, irregular jumps, and repetition, suggests a search for
some part of the code that will lead to an initial understanding.
FlowCycle involves following the same program flow sequence
several times, perhaps to gain a first understanding of the flow,
then to strengthen and reinforce it with repeated examinations of
the same code.

3. ONE NOVICE’S CHANGE IN
READING PATTERNS

3.1 First recording: start of course
In the first recording, made in the first week of the course, the
novice read through the code twice in a purely linear manner,
applying the LineScan pattern within the Linear pattern. This
would seem to indicate the DesignAtOnce strategy. However,
we must remember that strategies are not simply patterns: they
are the analyst’s attempt to determine what the programmer was
thinking. In this context, with a novice reader at the beginning
of a course, I believe that we see a strategy that might be called
StoryReading. This would be applied by readers who have as yet
learnt very little about program structure, and who therefore
read code just as they would read a story in a natural language.
It is abundantly clear that in this recording, this particular novice

31

programmer ‘reads the story’ of the code, then reads it a second
time, perhaps in the hope of better understanding it. In the
second reading there is a possible brief regression from the
println command to the preceding print command; however, the
programmer’s answer to the question suggests that either she
failed to register that the two were different, or she did not fully
understand the difference between the effects of the two
commands.

3.2 Second recording: middle of course
The second recording was made in the middle of the course, just
after students had learnt about data types. The code, shown
below, involves string processing that would probably appear
quite involved to a novice who just encountered it, using the
indexOf, length, substring, and replace functions.
public class textClass {
public static void main (String [] args) {
String text = "Hello World!";
int positionW = text.indexOf("W");
int textLength = text.length();
String word = text.substring(positionW,

textLength – 1);
System.out.print(text.replace(word, "Sun"));

}
}
The programmer begins by reading the code in a somewhat
Linear/LineScan manner, but already we see some variations
from the earlier reading pattern associated with the
StoryReading strategy. One is that the LineScan reading of each
line involves more regression: reading the line is no longer a
matter of starting at the left and proceeding to the right, but
involves a number of jumps back to previous parts of the line.
The second change is particularly interesting, and appears to
involve highly directed regressions to particular parts of the
code. Specifically, when a variable is encountered, gaze returns
to previous instances of the variable, as if the reader is checking
the variable’s history, to form a picture of what it now
represents. This would suggest a new strategy of Confirmation:
the reader has encountered a familiar variable, and is checking
back to confirm what it represents and perhaps what its current
value is.
Both of these changes appear to provide evidence for the
reader’s development from a simple story reader to a novice
code reader.
The reader then works through the code more seriously, with
many more regressions. At one point she appears to be
calculating the values of positionW and textLength, as gaze
moves deliberately along the literal string, first to the W, and
then beyond it. This is interesting because a more experienced
code reader is likely to appreciate that the code can be
understood without knowing these values of these variables, but
rather by understanding what roles they play.
The reader now proceeds to an even more detailed reading of the
last line of the code, particularly of the call to replace, with
many confirmation regressions to the initialisation of text and of
word, the latter involving further confirmations of position,
textLength, and text.
The reader then appears to have grasped the replace function
call, but spends more time on the function’s arguments, word
and "Sun", again with confirmations to the declaration of text.
This is followed by another long read of the computation of
word, initially linear but then with multiple confirmations to

position and textLength. Finally there is a more or less linear
read of the last line, but again with brief confirmation glances.
After all this, the programmer’s answer to the question suggests
that she understood the notion of replace, but not the role or
value of word, whose computation was arguably the most
involved aspect of the code. However, it is possible that she
actually meant to write something different. With just one more
letter she might have written “Replace World with the string
"Sun"”, which would be far closer to a correct summary.
Notwithstanding the correctness of her answer, her reading
pattern appears to indicate that she knew exactly what to read
and how to read it in order to try to understand this particular
variable.

3.3 Third recording: end of course
The third recording was made at the end of the course, shortly
after students had learnt about iteration, and the code involves a
nested pair of loops with a simple print statement inside the
inner loop and a println inside the outer loop. Also of interest,
the principal operations are carried out inside a separate void
method that is called from the main method.
The programmer again begins in a linear manner, which brings
her to the void printMethod immediately after the class header.
More or less as soon as she starts reading that, she appears to
appreciate that numberOfRows is a parameter, not a local
variable, and jumps forward to the method call within the main
method. This would appear to be another form of the
Confirmation strategy, one that seeks confirmation of something
not yet encountered, and definitely shows further development
as a code reader, in the form of an understanding of the code
structure.
Gaze is fairly haphazard in the remainder of this reading,
principally in the reading of the nested for loops, which is
essentially a form of Flicking between the two. It would be easy
to conclude that the reader has some sort of understanding of for
loops, but no real grasp of the nesting of two loops. This is
borne out by her answer to the question.

4. THE PROGRAMMER’S PROGRESS
Notwithstanding that this particular novice programmer
answered the second and third questions incorrectly or
incompletely, there would appear to be clear evidence of her
development, particularly between the recordings made at the
start of the course and in the middle of the course. In that time
her reading appears to have progressed from StoryReading to a
more code-focused strategy, characterised by multiple
regressions and Confirmations to relevant pasts of the code.

5. REFLECTIONS
It is generally accepted that good readers are characterised by
few regressions and short fixations. After examining these three
recordings from the same novice programmer at three points of a
programming course, I believe that this is a generalisation from
natural-language reading, which does not apply particularly well
to code reading.
I believe that regressions, as classified in these recordings as
part of the Confirmation strategy, are an essential aspect of code
reading. Unlike a story in natural language, a piece of program
code is not a linear construct, and cannot be usefully read in a
linear manner.

32

It might be true that code readers will have less need for the
Confirmation strategy as their expertise increases. Nevertheless,
it seems reasonable to conclude that the carefully directed use of
regressions and forward jumps will increase as program code
reading matures, as a necessary consequence of the non-linear
structure of program code. The recordings of this novice help to
support that conclusion.
Further data might help to confirm the observed progression
from StoryReading to patterns more associated with code
reading and understanding. Can we confirm that many or most
readers appear to be StoryReading at the beginning of their
courses? Does this apply to longer pieces of code? (The piece
used in the first recording is so short that StoryReading might be
an indication of the simplicity of the code rather than the early
developmental stage of the reader.) In what week did this
beginner advance from story reading to code reading? Do other
readers advance in about the same week? If not, what is the
range of weeks in which the change can be observed?

Having noted that different experts read code in different ways
[1], we must expect different novices to read code in different
ways. Nevertheless, for any novice who does start with story
reading, the advance to code reading might be considered as a
substantial step on the way to becoming an expert code reader.

6. REFERENCES
[1] T. Busjahn, C. Schulte, B. Sharif, Simon, A. Begel, M.

Hansen, R. Bednarik, P. Orlov, P. Ihantola, G.
Shchekotova, and M. Antropova (2014). Eye tracking in
computing education. Tenth International Computing
Education Research Conference (ICER 2014), Glasgow,
Scotland, 3-10.

33

Analyzing the Novice’s Gaze in Program Comprehension

Jozef Tvarozek
Faculty of Informatics and Information Technologies

Slovak University of Technology in Bratislava

jozef.tvarozek@stuba.sk

ABSTRACT

In this position paper, I give my opinion on the eye move-
ment records of two participants from a study on program
comprehension. First I analyze each task for each partici-
pant individually, and then I try to analyze differences be-
tween the participants. Finally, I reflect on what I was ex-
pecting to find in the data and hope to give comments on
improving the study.

Keywords

eye tracking, source code reading, program comprehension,
computer science education

1. INTRODUCTION
The data examined in this paper consists of eye movement

recordings for two participants, each having examined three
program comprehension tasks:

1. after Lesson 1 (Introduction)

2. after Lesson 4 (Fundamental Data Types, after lessons
on objects and classes), and

3. after Lesson 6 (Loops, after lesson on decisions)

Participants were asked to summarize the program seen
after each task. The gaze data provided were collected using
SMI RED-m eye tracker at 120 Hz with Ogama software.

2. PARTICIPANT 1
Participant 1 reported having 2 years of prior program-

ming experience. In the first recording, pseudo-code about
cakes having a price, and printing whether the price is odd
or even was presented. The code can be found on the work-
shop website. The participant did read the code in linear
fashion with regressions when details about the actual cake
prices were relevant. The participant’s program summary
was correct and in sufficient detail, having demonstrated

Analyzing the novice’s gaze workshop Freie Universitat Berlin, Germany,
November 7th - November 8th, 2014

full understanding of the code. The pseudo-code was well-
written, easy to read and verbose, almost plain English, and
it did not pose any problems for the participant having prior
programming experience.

The second task, presented a program for calculating av-
erage. In the first half of the recording, the participant read
the program in linear fashion, with short regressions. In
the second half, appearing to double check the mental rep-
resentation. Again, the program was an easy read, almost
plain English. Also, the class was named CalculateAverage
and considering that the participant was informed before
the study that the program is all correct and bug-free, there
is not much left to extract during the eye tracking session.
That is, when the program appears to be calculating aver-
age (as the name of the class, and variable’s name average
suggests), and it is said that the program is bug-free, then it
should calculate average. Calculating average is a trivial
mental exercise for a university student with two years of
prior programming experience. The eye movement record-
ing supports this hypothesis. The gaze data shows that the
student did not even inspect the actual calculation of aver-
age (num1+num2)/2 in any detail. The program provided
is linear with no tricky mental processing required; hence
the participant’s eye movement cannot exhibit any of such
processing. The participant’s summary was, same as previ-
ously, correct and in sufficient detail.

The third task, presented a program for printing a kind
of simple ASCII art – an asterisk pyramid. The core of the
program is a method containing two loops with an asterisk
being printed within the inner loop, and a newline in the
outer loop. The most difficult part of the comprehension
task is to understand the loop ranges and how it can pro-
duce a pattern, and what pattern. At first, the participant
appears to be reading the program linearly with small re-
gressions. Afterwards, the participant begins to inspect the
ranges in the loops more carefully, presumably iterating the
cycles to arrive at the final pattern. As before, participant’s
program summary was correct in sufficient detail, demon-
strating full comprehension.

Overall, the participant studied programs that were com-
paratively easy considering her previous programming ex-
perience. Basic English comprehension was sufficient for
understanding the first two programs. The third program
required a very basic understanding of loops.

3. PARTICIPANT 2
Participant 2 reported little prior programming experi-

ence. The first recording studied comprehension of a simple

34

program consisting of two print statements. The partici-
pant read in two linear passes with very few regressions.
Participant’s program summary did provide the program’s
output that was almost correct, not accounting for new-
lines correctly, presumably due to misinterpreting when Sys-
tem.out.println method writes the new line character to out-
put. Also, the program’s summary provided by the partic-
ipant was terse, suggesting the participant did not under-
stand the question or was not motivated enough.
The second task involved a program replacing a word

(World) within a string with another string (Sun). At first,
the participant familiarized with the code in one linear pass
with only small regressions, after that the participant strug-
gled to build thementalmodel of the program (its variables).
The participant’s summary suggests only little understand-
ing of the program’s meaning, since the summary can be de-
rived syntactically from the last line of source code. Deeper
understanding would enable the student to capture the cor-
rect output, provided the student understood the question.
The third task involved the same program as was the case

for Participant 2; that is two for loops printing a simple
ASCII art – an asterisk pyramid. In the first pass, the par-
ticipant read the code linearly and jumped forward to famil-
iarize with the function call and possible input parameters,
after the first pass the participant appears to double check
class and method names, and to memorize the individual
expressions, it does not appear that any analysis of control
flow is performed by the participant. Missing mental model
does not allow providing a summary in sufficient algorithmic
detail. Only a simple surface-level summary was provided.
Overall the participant appeared to read mostly the sur-

face form of the provided programs with no program structure-
induced gaze jumps, building no mental model that would
allow to answer the post-task question in more detail.

4. COMPARING PARTICIPANTS
The first task was easy for both participants. The sec-

ond task was easy for Participant 1, while Participant 2 got
comparatively more involved task that required building a
mental model of variables and their run-time values. The
third task was the same and provides a better vehicle for
comparison.
The first participant did engage in detailed analysis of

the loops while at the same time read the code mostly lin-
early. The second participant did exhibit more structure
in reading – i.e. did not read only linearly but jumped –
but ultimately failed to understand the program as demon-
strated by the inability to provide correct program summary.
One explanation is that the prior programming experience
of Participant 1 enabled her to read the program linearly
while building the mental model. On the other hand, the
second participant had to jump during reading because she
was not able to build a mental model effectively in a linear
pass through the code.

5. WHAT DID I EXPECT TO FIND, AND

WHAT CAN WE IMPROVE?
Before I examined the data, I expected students to gain

better understanding of programming language structural
elements (such as for loops and functions) over time. Pro-
gramming is about building mental models about the pro-
gram: its variables, control flow, memory state during ex-

ecution, etc. I expected the observed reading pattern con-
verges to a pattern in which student reads the code jump-
ing between related elements: i.e. scans related items (e.g.
if-else-break, for-break-continue, class-methods-arguments-
returnValue) in succession. The data suggests that partic-
ipant with longer prior programming experience (and also
having a better programming skill) did in fact jump less be-
tween the related elements that the participant with no prior
programming experience (and with less programming skill).
The participant with higher skill might be able to extract
the mental model from the code more effectively, and thus
needs less jumping.

Overall the selection of tasks, did not favor this view on
programming. Basic English comprehension was mostly suf-
ficient to understand most of the tasks studied, while the
final difficult one was answered sufficiently by only the stu-
dent with previous programming experience. I expect more
programming learning progress can be observed when par-
ticipants are required to build mental models of the pro-
gram beyond basic English comprehension. Modern coding
standards recommend self-explanatory class names and vari-
able names, but well named entities can give away too much
to observe any significant code reading during eye tracking
study. Considering tasks that require debugging and/or con-
trol flow analysis would presumably enable observing better
code reading patterns.

6. ACKNOWLEDGMENTS
This article was created with the support of the Ministry

of Education, Science, Research and Sport of the Slovak
Republic within the Research and Development Operational
Programme for the project ”University Science Park of STU
Bratislava”, ITMS 26240220084, co-funded by the European
Regional Development Fund, and Scientific Grant Agency
of the Slovak Republic, grant No. VG 1/0752/14. I would
like to thank the workshop organizers for providing the gaze
data and all their efforts in organizing the event.

35

Eye Movements in Programming Education II

Analyzing the Novice's Gaze

International Workshop at the 9th WiPSCE Conference on Computing Education
Freie Universität Berlin, Germany, November 7th - November 8th, 2014

Organizers: Teresa Busjahn, Carsten Schulte, Sascha Tamm (Freie Universität Berlin),
Roman Bednarik (University of Eastern Finland)

The second international workshop on Eye Movements in Programming Education focuses on the development
of novice programmers.

Reading occurs in debugging, maintenance and the learning of programming languages. It provides the essen-
tial basis for comprehension. By analyzing behavioral data such as gaze during code reading processes, we ex-
plore this essential part of programming.

To participate send a mail to teresa.busjahn@fu-berlin.de. Note that it is possible to participate independent of
attending WiPSCE.
Prior to the workshop, participants will get three data sets showing a novice's gaze during code reading tasks at
the beginning, middle and end of an introductory Java course.
Participants will delve into the data in order to identify and reflect on stages of novice development. A short in-
dividual position paper of the results is required (max. 2-3 pages). A technical workshop report including the
position papers will be published at FU Berlin.
During the workshop session in Berlin, we will work on how novice code reading skills develop and how this
progress can be linked to observable gaze data. Afterwards, participants jointly prepare a publication describing
the results.

IMPORTANT DATES

Making data and tools available for participants: end of August 2014

Deadline for position papers: Friday, October 17th, 2014

Pre-workshop get-together: Friday, November 7th, 2014 (evening)

Workshop: Saturday, November 8th, 2014

36

Illustrations of gaze data

The eye movement data of the two participants DO21 and EU10 was recorded using Ogama (www.ogama.net)
and an SMI RED-m Tracker (120 Hz).
Visualizations were done with eyeCode (https://github.com/ synesthesiam/ eyecode).

DO21

Scanpaths DO21

37

Timelines DO21

38

EU10

Scanpaths EU10

39

Timelines EU10

40

List of participants

Name Institution

Bednarik, Roman University of Eastern Finland, Finland

Begel, Andrew Microsoft Research, USA

Buchholz, Sven FH Brandenburg, Germany

Busjahn, Teresa Freie Universität Berlin, Germany

Crosby, Martha University of Hawai i at Mānoa, USA

Heteren-Frese, Christoph van Freie Universität Berlin, Germany

Lohmeier, Sebastian Technische Universität Berlin, Germany

Löhnertz, Martin Universität Trier, Germany

Orlov, Pavel St. Petersburg State Polytechnic University, Russia

Paterson, James H. Glasgow Caledonian University, UK

Pyykkönen-Klauck, Pirita SensoMotoric Instruments, Germany

Przybylla, Mareen Universität Potsdam, Germany

Rönnecke, Stefan SensoMotoric Instruments, Germany

Schulte, Carsten Freie Universität Berlin, Germany

Sharif, Bonita Youngstown State University, USA

Sharma, Kshitij École Polytechnique Fédérale de Lausanne, Switzerland

Simon University of Newcastle, Australia

Sudol-DeLyser, Leigh Ann CSNYC, USA

Tamm, Sascha Freie Universität Berlin, Germany

Tvarozek, Jozef Slovak University of Technology in Bratislava, Slovakia

Villasco, Clelia SensoMotoric Instruments, Germany

41

